Robust Saliency-Aware Distillation for Few-Shot Fine-Grained Visual Recognition
Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature addresses this challenge by employing local-based representation approaches, which may not sufficiently facilitate meaningful object-specific semantic understan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2024, Vol.26, p.7529-7542 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7542 |
---|---|
container_issue | |
container_start_page | 7529 |
container_title | IEEE transactions on multimedia |
container_volume | 26 |
creator | Liu, Haiqi Chen, C. L. Philip Gong, Xinrong Zhang, Tong |
description | Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature addresses this challenge by employing local-based representation approaches, which may not sufficiently facilitate meaningful object-specific semantic understanding, leading to a reliance on apparent background correlations. Moreover, they primarily rely on high-dimensional local descriptors to construct complex embedding space, potentially limiting the generalization. To address the above challenges, this article proposes a novel model, Robust Saliency-aware Distillation (RSaD), for few-shot fine-grained visual recognition. RSaD introduces additional saliency-aware supervision via saliency detection to guide the model toward focusing on the intrinsic discriminative regions. Specifically, RSaD utilizes the saliency detection model to emphasize the critical regions of each sub-category, providing additional object-specific information for fine-grained prediction. RSaD transfers such information with two symmetric branches in a mutual learning paradigm. Furthermore, RSaD exploits inter-regional relationships to enhance the informativeness of the representation and subsequently summarize the highlighted details into contextual embeddings to facilitate the effective transfer, enabling quick generalization to novel sub-categories. The proposed approach is empirically evaluated on three widely used benchmarks, demonstrating its superior performance. |
doi_str_mv | 10.1109/TMM.2024.3369870 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10445009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10445009</ieee_id><sourcerecordid>3044650196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7e1d0d1e8256fcbe2da65ac009e16006253f253a0f98cf5842caf4b6df34f06e3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQRoMoWKt3Dx4WPKdOstns5ljUVqGl0FavIc0mmrJuarJL6b83pT14GL45vG8GHkL3BEaEgHhaz-cjCpSN8pyLqoQLNCCCEQxQlpdpLyhgQQlco5sYtwCEFVAO0GLpN33sspVqnGn1AY_3KpjsxcXONY3qnG8z60M2MXu8-vZdNnGtwdOgUtTZp4u9arKl0f6rdUf4Fl1Z1URzd84h-pi8rp_f8GwxfX8ez7Cmgna4NKSGmpiKFtzqjaG14oXSAMIQDsBpkds0CqyotC0qRrWybMNrmzML3ORD9Hi6uwv-tzexk1vfhza9lDkwxgsggicKTpQOPsZgrNwF96PCQRKQR20yaZNHbfKsLVUeThVnjPmHs-QLRP4HGUZorg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044650196</pqid></control><display><type>article</type><title>Robust Saliency-Aware Distillation for Few-Shot Fine-Grained Visual Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Haiqi ; Chen, C. L. Philip ; Gong, Xinrong ; Zhang, Tong</creator><creatorcontrib>Liu, Haiqi ; Chen, C. L. Philip ; Gong, Xinrong ; Zhang, Tong</creatorcontrib><description>Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature addresses this challenge by employing local-based representation approaches, which may not sufficiently facilitate meaningful object-specific semantic understanding, leading to a reliance on apparent background correlations. Moreover, they primarily rely on high-dimensional local descriptors to construct complex embedding space, potentially limiting the generalization. To address the above challenges, this article proposes a novel model, Robust Saliency-aware Distillation (RSaD), for few-shot fine-grained visual recognition. RSaD introduces additional saliency-aware supervision via saliency detection to guide the model toward focusing on the intrinsic discriminative regions. Specifically, RSaD utilizes the saliency detection model to emphasize the critical regions of each sub-category, providing additional object-specific information for fine-grained prediction. RSaD transfers such information with two symmetric branches in a mutual learning paradigm. Furthermore, RSaD exploits inter-regional relationships to enhance the informativeness of the representation and subsequently summarize the highlighted details into contextual embeddings to facilitate the effective transfer, enabling quick generalization to novel sub-categories. The proposed approach is empirically evaluated on three widely used benchmarks, demonstrating its superior performance.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2024.3369870</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Computer vision ; Distillation ; Few-shot fine-grained visual recognition ; few-shot learning ; mutual learning ; Probability distribution ; Recognition ; Representations ; Robustness ; Salience ; Saliency detection ; Semantics ; Task analysis ; Training ; Visualization</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.7529-7542</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7e1d0d1e8256fcbe2da65ac009e16006253f253a0f98cf5842caf4b6df34f06e3</citedby><cites>FETCH-LOGICAL-c292t-7e1d0d1e8256fcbe2da65ac009e16006253f253a0f98cf5842caf4b6df34f06e3</cites><orcidid>0000-0002-7025-6365 ; 0009-0002-1456-8548 ; 0000-0001-5821-6283 ; 0000-0001-5451-7230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10445009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10445009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Haiqi</creatorcontrib><creatorcontrib>Chen, C. L. Philip</creatorcontrib><creatorcontrib>Gong, Xinrong</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><title>Robust Saliency-Aware Distillation for Few-Shot Fine-Grained Visual Recognition</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature addresses this challenge by employing local-based representation approaches, which may not sufficiently facilitate meaningful object-specific semantic understanding, leading to a reliance on apparent background correlations. Moreover, they primarily rely on high-dimensional local descriptors to construct complex embedding space, potentially limiting the generalization. To address the above challenges, this article proposes a novel model, Robust Saliency-aware Distillation (RSaD), for few-shot fine-grained visual recognition. RSaD introduces additional saliency-aware supervision via saliency detection to guide the model toward focusing on the intrinsic discriminative regions. Specifically, RSaD utilizes the saliency detection model to emphasize the critical regions of each sub-category, providing additional object-specific information for fine-grained prediction. RSaD transfers such information with two symmetric branches in a mutual learning paradigm. Furthermore, RSaD exploits inter-regional relationships to enhance the informativeness of the representation and subsequently summarize the highlighted details into contextual embeddings to facilitate the effective transfer, enabling quick generalization to novel sub-categories. The proposed approach is empirically evaluated on three widely used benchmarks, demonstrating its superior performance.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Distillation</subject><subject>Few-shot fine-grained visual recognition</subject><subject>few-shot learning</subject><subject>mutual learning</subject><subject>Probability distribution</subject><subject>Recognition</subject><subject>Representations</subject><subject>Robustness</subject><subject>Salience</subject><subject>Saliency detection</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><subject>Visualization</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQRoMoWKt3Dx4WPKdOstns5ljUVqGl0FavIc0mmrJuarJL6b83pT14GL45vG8GHkL3BEaEgHhaz-cjCpSN8pyLqoQLNCCCEQxQlpdpLyhgQQlco5sYtwCEFVAO0GLpN33sspVqnGn1AY_3KpjsxcXONY3qnG8z60M2MXu8-vZdNnGtwdOgUtTZp4u9arKl0f6rdUf4Fl1Z1URzd84h-pi8rp_f8GwxfX8ez7Cmgna4NKSGmpiKFtzqjaG14oXSAMIQDsBpkds0CqyotC0qRrWybMNrmzML3ORD9Hi6uwv-tzexk1vfhza9lDkwxgsggicKTpQOPsZgrNwF96PCQRKQR20yaZNHbfKsLVUeThVnjPmHs-QLRP4HGUZorg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Haiqi</creator><creator>Chen, C. L. Philip</creator><creator>Gong, Xinrong</creator><creator>Zhang, Tong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7025-6365</orcidid><orcidid>https://orcid.org/0009-0002-1456-8548</orcidid><orcidid>https://orcid.org/0000-0001-5821-6283</orcidid><orcidid>https://orcid.org/0000-0001-5451-7230</orcidid></search><sort><creationdate>2024</creationdate><title>Robust Saliency-Aware Distillation for Few-Shot Fine-Grained Visual Recognition</title><author>Liu, Haiqi ; Chen, C. L. Philip ; Gong, Xinrong ; Zhang, Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7e1d0d1e8256fcbe2da65ac009e16006253f253a0f98cf5842caf4b6df34f06e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Distillation</topic><topic>Few-shot fine-grained visual recognition</topic><topic>few-shot learning</topic><topic>mutual learning</topic><topic>Probability distribution</topic><topic>Recognition</topic><topic>Representations</topic><topic>Robustness</topic><topic>Salience</topic><topic>Saliency detection</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haiqi</creatorcontrib><creatorcontrib>Chen, C. L. Philip</creatorcontrib><creatorcontrib>Gong, Xinrong</creatorcontrib><creatorcontrib>Zhang, Tong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Haiqi</au><au>Chen, C. L. Philip</au><au>Gong, Xinrong</au><au>Zhang, Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Saliency-Aware Distillation for Few-Shot Fine-Grained Visual Recognition</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>7529</spage><epage>7542</epage><pages>7529-7542</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>Recognizing novel sub-categories with scarce samples is an essential and challenging research topic in computer vision. Existing literature addresses this challenge by employing local-based representation approaches, which may not sufficiently facilitate meaningful object-specific semantic understanding, leading to a reliance on apparent background correlations. Moreover, they primarily rely on high-dimensional local descriptors to construct complex embedding space, potentially limiting the generalization. To address the above challenges, this article proposes a novel model, Robust Saliency-aware Distillation (RSaD), for few-shot fine-grained visual recognition. RSaD introduces additional saliency-aware supervision via saliency detection to guide the model toward focusing on the intrinsic discriminative regions. Specifically, RSaD utilizes the saliency detection model to emphasize the critical regions of each sub-category, providing additional object-specific information for fine-grained prediction. RSaD transfers such information with two symmetric branches in a mutual learning paradigm. Furthermore, RSaD exploits inter-regional relationships to enhance the informativeness of the representation and subsequently summarize the highlighted details into contextual embeddings to facilitate the effective transfer, enabling quick generalization to novel sub-categories. The proposed approach is empirically evaluated on three widely used benchmarks, demonstrating its superior performance.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2024.3369870</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7025-6365</orcidid><orcidid>https://orcid.org/0009-0002-1456-8548</orcidid><orcidid>https://orcid.org/0000-0001-5821-6283</orcidid><orcidid>https://orcid.org/0000-0001-5451-7230</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2024, Vol.26, p.7529-7542 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_ieee_primary_10445009 |
source | IEEE Electronic Library (IEL) |
subjects | Computational modeling Computer vision Distillation Few-shot fine-grained visual recognition few-shot learning mutual learning Probability distribution Recognition Representations Robustness Salience Saliency detection Semantics Task analysis Training Visualization |
title | Robust Saliency-Aware Distillation for Few-Shot Fine-Grained Visual Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Saliency-Aware%20Distillation%20for%20Few-Shot%20Fine-Grained%20Visual%20Recognition&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Liu,%20Haiqi&rft.date=2024&rft.volume=26&rft.spage=7529&rft.epage=7542&rft.pages=7529-7542&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2024.3369870&rft_dat=%3Cproquest_RIE%3E3044650196%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044650196&rft_id=info:pmid/&rft_ieee_id=10445009&rfr_iscdi=true |