Efficient Unsupervised Video Hashing With Contextual Modeling and Structural Controlling

The most important effect of the video hashing technique is to support fast retrieval, which is benefiting from the high efficiency of binary calculation. Current video hash approaches are thus mainly targeted at learning compact binary codes to represent video content accurately. However, they may...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2024, Vol.26, p.7438-7450
Hauptverfasser: Duan, Jingru, Hao, Yanbin, Zhu, Bin, Cheng, Lechao, Zhou, Pengyuan, Wang, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7450
container_issue
container_start_page 7438
container_title IEEE transactions on multimedia
container_volume 26
creator Duan, Jingru
Hao, Yanbin
Zhu, Bin
Cheng, Lechao
Zhou, Pengyuan
Wang, Xiang
description The most important effect of the video hashing technique is to support fast retrieval, which is benefiting from the high efficiency of binary calculation. Current video hash approaches are thus mainly targeted at learning compact binary codes to represent video content accurately. However, they may overlook the generation efficiency for hash codes, i.e., designing lightweight neural networks. This article proposes an Efficient Unsupervised Video Hashing ( EUVH ) method, which is not only for computing compact hash codes but also for designing a lightweight deep model. Specifically, we present an MLP-based model, where the video tensor is split into several groups and multiple axial contexts are explored to separately refine them in parallel. The axial contexts are referred to as the dynamics aggregated from different axial scales, including long/middle/short-range dependencies. The group operation significantly reduces the computational cost of the MLP backbone. Moreover, to achieve compact video hash codes, three structural losses are utilized. As demonstrated by the experiment, the three structures are highly complementary for approximating the real data structure. We conduct extensive experiments on three benchmark datasets for the unsupervised video hashing task and show the superior trade-off between performance and computational cost of our EUVH to the state of the arts.
doi_str_mv 10.1109/TMM.2024.3368924
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10443557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443557</ieee_id><sourcerecordid>3044650155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4bb9eb666117a08b77bde9af0a938a477c81d85311eca16a56c8e3cb8a5e39643</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45x1_JiKpCkVox0AKb5TgX6qokxXYQ_HsStQPTne597k56CLmmMKEUirvVcjnJIOMTxmReZPyEjGjBaQqg1GnfiwzSIqNwTi5C2AJQLkCNyPusrp112MRk3YRuj_7bBaySV1dhm8xN2LjmI3lzcZNM2ybiT-zMLlm2Fe6GwDRV8hJ9Z2Pn-_mA-HY3RJfkrDa7gFfHOibrh9lqOk8Xz49P0_tFajMuYsrLssBSSkmpMpCXSpUVFqYGU7DccKVsTqtcMErRGiqNkDZHZsvcCGSF5GxMbg9397796jBEvW073_QvNQPOpQAqRE_BgbK-DcFjrffefRr_qynowZ_u_enBnz7661duDisOEf_hnDMhFPsDVn5swQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3044650155</pqid></control><display><type>article</type><title>Efficient Unsupervised Video Hashing With Contextual Modeling and Structural Controlling</title><source>IEEE Electronic Library (IEL)</source><creator>Duan, Jingru ; Hao, Yanbin ; Zhu, Bin ; Cheng, Lechao ; Zhou, Pengyuan ; Wang, Xiang</creator><creatorcontrib>Duan, Jingru ; Hao, Yanbin ; Zhu, Bin ; Cheng, Lechao ; Zhou, Pengyuan ; Wang, Xiang</creatorcontrib><description>The most important effect of the video hashing technique is to support fast retrieval, which is benefiting from the high efficiency of binary calculation. Current video hash approaches are thus mainly targeted at learning compact binary codes to represent video content accurately. However, they may overlook the generation efficiency for hash codes, i.e., designing lightweight neural networks. This article proposes an Efficient Unsupervised Video Hashing ( EUVH ) method, which is not only for computing compact hash codes but also for designing a lightweight deep model. Specifically, we present an MLP-based model, where the video tensor is split into several groups and multiple axial contexts are explored to separately refine them in parallel. The axial contexts are referred to as the dynamics aggregated from different axial scales, including long/middle/short-range dependencies. The group operation significantly reduces the computational cost of the MLP backbone. Moreover, to achieve compact video hash codes, three structural losses are utilized. As demonstrated by the experiment, the three structures are highly complementary for approximating the real data structure. We conduct extensive experiments on three benchmark datasets for the unsupervised video hashing task and show the superior trade-off between performance and computational cost of our EUVH to the state of the arts.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2024.3368924</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Binary codes ; Codes ; Computational efficiency ; Computational modeling ; Computing costs ; Context modeling ; data structure ; Data structures ; deep neural network ; Feature extraction ; Hash functions ; large-scale retrieval ; Lightweight ; Neural networks ; Tensors ; Transformers ; Video hashing</subject><ispartof>IEEE transactions on multimedia, 2024, Vol.26, p.7438-7450</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4bb9eb666117a08b77bde9af0a938a477c81d85311eca16a56c8e3cb8a5e39643</cites><orcidid>0000-0002-9213-2611 ; 0000-0001-7142-9857 ; 0000-0002-0695-1566 ; 0000-0002-6148-6329 ; 0000-0002-7546-9052 ; 0000-0002-7909-4059</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443557$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443557$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duan, Jingru</creatorcontrib><creatorcontrib>Hao, Yanbin</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Cheng, Lechao</creatorcontrib><creatorcontrib>Zhou, Pengyuan</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><title>Efficient Unsupervised Video Hashing With Contextual Modeling and Structural Controlling</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>The most important effect of the video hashing technique is to support fast retrieval, which is benefiting from the high efficiency of binary calculation. Current video hash approaches are thus mainly targeted at learning compact binary codes to represent video content accurately. However, they may overlook the generation efficiency for hash codes, i.e., designing lightweight neural networks. This article proposes an Efficient Unsupervised Video Hashing ( EUVH ) method, which is not only for computing compact hash codes but also for designing a lightweight deep model. Specifically, we present an MLP-based model, where the video tensor is split into several groups and multiple axial contexts are explored to separately refine them in parallel. The axial contexts are referred to as the dynamics aggregated from different axial scales, including long/middle/short-range dependencies. The group operation significantly reduces the computational cost of the MLP backbone. Moreover, to achieve compact video hash codes, three structural losses are utilized. As demonstrated by the experiment, the three structures are highly complementary for approximating the real data structure. We conduct extensive experiments on three benchmark datasets for the unsupervised video hashing task and show the superior trade-off between performance and computational cost of our EUVH to the state of the arts.</description><subject>Binary codes</subject><subject>Codes</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Computing costs</subject><subject>Context modeling</subject><subject>data structure</subject><subject>Data structures</subject><subject>deep neural network</subject><subject>Feature extraction</subject><subject>Hash functions</subject><subject>large-scale retrieval</subject><subject>Lightweight</subject><subject>Neural networks</subject><subject>Tensors</subject><subject>Transformers</subject><subject>Video hashing</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBEYk45x1_JiKpCkVox0AKb5TgX6qokxXYQ_HsStQPTne597k56CLmmMKEUirvVcjnJIOMTxmReZPyEjGjBaQqg1GnfiwzSIqNwTi5C2AJQLkCNyPusrp112MRk3YRuj_7bBaySV1dhm8xN2LjmI3lzcZNM2ybiT-zMLlm2Fe6GwDRV8hJ9Z2Pn-_mA-HY3RJfkrDa7gFfHOibrh9lqOk8Xz49P0_tFajMuYsrLssBSSkmpMpCXSpUVFqYGU7DccKVsTqtcMErRGiqNkDZHZsvcCGSF5GxMbg9397796jBEvW073_QvNQPOpQAqRE_BgbK-DcFjrffefRr_qynowZ_u_enBnz7661duDisOEf_hnDMhFPsDVn5swQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Duan, Jingru</creator><creator>Hao, Yanbin</creator><creator>Zhu, Bin</creator><creator>Cheng, Lechao</creator><creator>Zhou, Pengyuan</creator><creator>Wang, Xiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9213-2611</orcidid><orcidid>https://orcid.org/0000-0001-7142-9857</orcidid><orcidid>https://orcid.org/0000-0002-0695-1566</orcidid><orcidid>https://orcid.org/0000-0002-6148-6329</orcidid><orcidid>https://orcid.org/0000-0002-7546-9052</orcidid><orcidid>https://orcid.org/0000-0002-7909-4059</orcidid></search><sort><creationdate>2024</creationdate><title>Efficient Unsupervised Video Hashing With Contextual Modeling and Structural Controlling</title><author>Duan, Jingru ; Hao, Yanbin ; Zhu, Bin ; Cheng, Lechao ; Zhou, Pengyuan ; Wang, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4bb9eb666117a08b77bde9af0a938a477c81d85311eca16a56c8e3cb8a5e39643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binary codes</topic><topic>Codes</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Computing costs</topic><topic>Context modeling</topic><topic>data structure</topic><topic>Data structures</topic><topic>deep neural network</topic><topic>Feature extraction</topic><topic>Hash functions</topic><topic>large-scale retrieval</topic><topic>Lightweight</topic><topic>Neural networks</topic><topic>Tensors</topic><topic>Transformers</topic><topic>Video hashing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Jingru</creatorcontrib><creatorcontrib>Hao, Yanbin</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Cheng, Lechao</creatorcontrib><creatorcontrib>Zhou, Pengyuan</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duan, Jingru</au><au>Hao, Yanbin</au><au>Zhu, Bin</au><au>Cheng, Lechao</au><au>Zhou, Pengyuan</au><au>Wang, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Unsupervised Video Hashing With Contextual Modeling and Structural Controlling</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2024</date><risdate>2024</risdate><volume>26</volume><spage>7438</spage><epage>7450</epage><pages>7438-7450</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>The most important effect of the video hashing technique is to support fast retrieval, which is benefiting from the high efficiency of binary calculation. Current video hash approaches are thus mainly targeted at learning compact binary codes to represent video content accurately. However, they may overlook the generation efficiency for hash codes, i.e., designing lightweight neural networks. This article proposes an Efficient Unsupervised Video Hashing ( EUVH ) method, which is not only for computing compact hash codes but also for designing a lightweight deep model. Specifically, we present an MLP-based model, where the video tensor is split into several groups and multiple axial contexts are explored to separately refine them in parallel. The axial contexts are referred to as the dynamics aggregated from different axial scales, including long/middle/short-range dependencies. The group operation significantly reduces the computational cost of the MLP backbone. Moreover, to achieve compact video hash codes, three structural losses are utilized. As demonstrated by the experiment, the three structures are highly complementary for approximating the real data structure. We conduct extensive experiments on three benchmark datasets for the unsupervised video hashing task and show the superior trade-off between performance and computational cost of our EUVH to the state of the arts.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2024.3368924</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9213-2611</orcidid><orcidid>https://orcid.org/0000-0001-7142-9857</orcidid><orcidid>https://orcid.org/0000-0002-0695-1566</orcidid><orcidid>https://orcid.org/0000-0002-6148-6329</orcidid><orcidid>https://orcid.org/0000-0002-7546-9052</orcidid><orcidid>https://orcid.org/0000-0002-7909-4059</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2024, Vol.26, p.7438-7450
issn 1520-9210
1941-0077
language eng
recordid cdi_ieee_primary_10443557
source IEEE Electronic Library (IEL)
subjects Binary codes
Codes
Computational efficiency
Computational modeling
Computing costs
Context modeling
data structure
Data structures
deep neural network
Feature extraction
Hash functions
large-scale retrieval
Lightweight
Neural networks
Tensors
Transformers
Video hashing
title Efficient Unsupervised Video Hashing With Contextual Modeling and Structural Controlling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Unsupervised%20Video%20Hashing%20With%20Contextual%20Modeling%20and%20Structural%20Controlling&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Duan,%20Jingru&rft.date=2024&rft.volume=26&rft.spage=7438&rft.epage=7450&rft.pages=7438-7450&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2024.3368924&rft_dat=%3Cproquest_RIE%3E3044650155%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3044650155&rft_id=info:pmid/&rft_ieee_id=10443557&rfr_iscdi=true