Fabrication Procedures and Mechanical Supports of No-Insulation All-GdBCO Double Pancake Magnets in Liquid Helium

The no-insulation (NI) high-temperature superconductor (HTS) winding technique enables the fabrication of highly compact magnets with self-quench protection. NI pancake coils are implemented to develop a 28-T HTS magnet for the operation of a 792-GHz gyrotron, which is a microwave source for dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-06, Vol.34 (4), p.1-9
Hauptverfasser: Gao, Chukun, Chen, Pin-Hui, Alaniva, Nicholas, Snaedis Bjorgvinsdottir, Pagonakis, Ioannis, Dapp, Alexander, Urban, Michael, Gunzenhauser, Ronny, Barnes, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 4
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Gao, Chukun
Chen, Pin-Hui
Alaniva, Nicholas
Snaedis Bjorgvinsdottir
Pagonakis, Ioannis
Dapp, Alexander
Urban, Michael
Gunzenhauser, Ronny
Barnes, Alexander
description The no-insulation (NI) high-temperature superconductor (HTS) winding technique enables the fabrication of highly compact magnets with self-quench protection. NI pancake coils are implemented to develop a 28-T HTS magnet for the operation of a 792-GHz gyrotron, which is a microwave source for dynamic nuclear polarization nuclear magnetic resonance. To this end, three NI all-GdBCO double pancake (DP) magnets were fabricated using different winding diameters and procedures. The objective was to explore different mechanical coil protection mechanisms at high magnetic fields, including clamping, overband, and solder impregnation. Experiments in liquid helium using magnets with winding diameters of 18, 25, and 66 mm yielded a center field of 14.4, 11.2, and 8.1 T, respectively. The maximum currents applied to the DP magnets ranged from 780 to 1000 A. Both the 18 and 66 mm DP coils contained 400 m (2 × 200 m) HTS tape, while the 25 mm seamless DP coil consisted of only one continuous 200 m HTS tape. The 25 mm magnet with solder impregnation showed the best repeatability, although the current density was reduced owing to the solder thickness between the coil windings. Critical to the implementation of such coils in liquid helium is to effectively transfer high currents to the magnet, while not compromising the helium boil-off. Furthermore, the design of hybrid copper-HTS current leads capable of carrying current larger than 1000 A from room temperature to the HTS magnet at 4.2 K is presented. The implementation of liquid nitrogen-cooled hybrid copper-HTS current leads reduced the helium boil-off and permitted independent temperature control of the current leads.
doi_str_mv 10.1109/TASC.2024.3368241
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10443072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443072</ieee_id><sourcerecordid>2938019090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-b8b2039b72550fe6e285b55ad8e8626a66ddfe58e16bf398022dab5fcf583583</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmTTzbFG-wGtLbT3ZZPMamq6m-4mB_-9KfEgDMzAvM8MPAg9UjKhlKQvh9k-mzDC4gnniWQxvUIjKoSMmKDiup-JoJFkjN-iuxCOhNBYxmKEznOd-6rQbeUs3nlXQNl5CFjbEm-g-NK2X9Z43zWN823AzuAPF61s6OqBmdV1tChfsy1-c11eA95pW-hvwBv9aaEnKovX1bmrSryEuupO9-jG6DrAw18fo8P8_ZAto_V2scpm66hgadxGucwZ4Wk-ZUIQAwkwKXIhdClBJizRSVKWBoQEmuSGp5IwVupcmMIIyfsao-fhbOPduYPQqqPrvO0_KpZySWhKUtKn6JAqvAvBg1GNr07a_yhK1EWsuohVF7HqT2zPPA1MBQD_8nHMyZTxX_DedHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938019090</pqid></control><display><type>article</type><title>Fabrication Procedures and Mechanical Supports of No-Insulation All-GdBCO Double Pancake Magnets in Liquid Helium</title><source>IEEE Xplore</source><creator>Gao, Chukun ; Chen, Pin-Hui ; Alaniva, Nicholas ; Snaedis Bjorgvinsdottir ; Pagonakis, Ioannis ; Dapp, Alexander ; Urban, Michael ; Gunzenhauser, Ronny ; Barnes, Alexander</creator><creatorcontrib>Gao, Chukun ; Chen, Pin-Hui ; Alaniva, Nicholas ; Snaedis Bjorgvinsdottir ; Pagonakis, Ioannis ; Dapp, Alexander ; Urban, Michael ; Gunzenhauser, Ronny ; Barnes, Alexander</creatorcontrib><description>The no-insulation (NI) high-temperature superconductor (HTS) winding technique enables the fabrication of highly compact magnets with self-quench protection. NI pancake coils are implemented to develop a 28-T HTS magnet for the operation of a 792-GHz gyrotron, which is a microwave source for dynamic nuclear polarization nuclear magnetic resonance. To this end, three NI all-GdBCO double pancake (DP) magnets were fabricated using different winding diameters and procedures. The objective was to explore different mechanical coil protection mechanisms at high magnetic fields, including clamping, overband, and solder impregnation. Experiments in liquid helium using magnets with winding diameters of 18, 25, and 66 mm yielded a center field of 14.4, 11.2, and 8.1 T, respectively. The maximum currents applied to the DP magnets ranged from 780 to 1000 A. Both the 18 and 66 mm DP coils contained 400 m (2 × 200 m) HTS tape, while the 25 mm seamless DP coil consisted of only one continuous 200 m HTS tape. The 25 mm magnet with solder impregnation showed the best repeatability, although the current density was reduced owing to the solder thickness between the coil windings. Critical to the implementation of such coils in liquid helium is to effectively transfer high currents to the magnet, while not compromising the helium boil-off. Furthermore, the design of hybrid copper-HTS current leads capable of carrying current larger than 1000 A from room temperature to the HTS magnet at 4.2 K is presented. The implementation of liquid nitrogen-cooled hybrid copper-HTS current leads reduced the helium boil-off and permitted independent temperature control of the current leads.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3368241</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Barium compounds ; Coils ; Coils (windings) ; Copper ; Diameters ; Double pancake (DP) coils ; Gadolinium ; Gyrotrons ; Helium ; High temperature superconductors ; high-temperature superconductors (HTSs) ; Insulation ; Liquid helium ; Liquid nitrogen ; Magnets ; NMR ; no-insulation (NI) coils ; Nuclear magnetic resonance ; overband ; Pancake coils ; Room temperature ; solder impregnation ; Soldering ; Solders ; Temperature control ; Winding</subject><ispartof>IEEE transactions on applied superconductivity, 2024-06, Vol.34 (4), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-b8b2039b72550fe6e285b55ad8e8626a66ddfe58e16bf398022dab5fcf583583</citedby><cites>FETCH-LOGICAL-c294t-b8b2039b72550fe6e285b55ad8e8626a66ddfe58e16bf398022dab5fcf583583</cites><orcidid>0000-0003-3373-1582 ; 0000-0002-9279-3196 ; 0009-0005-5783-4887 ; 0000-0003-3707-5391 ; 0000-0002-8614-6304 ; 0000-0001-9191-3048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443072$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443072$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Chukun</creatorcontrib><creatorcontrib>Chen, Pin-Hui</creatorcontrib><creatorcontrib>Alaniva, Nicholas</creatorcontrib><creatorcontrib>Snaedis Bjorgvinsdottir</creatorcontrib><creatorcontrib>Pagonakis, Ioannis</creatorcontrib><creatorcontrib>Dapp, Alexander</creatorcontrib><creatorcontrib>Urban, Michael</creatorcontrib><creatorcontrib>Gunzenhauser, Ronny</creatorcontrib><creatorcontrib>Barnes, Alexander</creatorcontrib><title>Fabrication Procedures and Mechanical Supports of No-Insulation All-GdBCO Double Pancake Magnets in Liquid Helium</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The no-insulation (NI) high-temperature superconductor (HTS) winding technique enables the fabrication of highly compact magnets with self-quench protection. NI pancake coils are implemented to develop a 28-T HTS magnet for the operation of a 792-GHz gyrotron, which is a microwave source for dynamic nuclear polarization nuclear magnetic resonance. To this end, three NI all-GdBCO double pancake (DP) magnets were fabricated using different winding diameters and procedures. The objective was to explore different mechanical coil protection mechanisms at high magnetic fields, including clamping, overband, and solder impregnation. Experiments in liquid helium using magnets with winding diameters of 18, 25, and 66 mm yielded a center field of 14.4, 11.2, and 8.1 T, respectively. The maximum currents applied to the DP magnets ranged from 780 to 1000 A. Both the 18 and 66 mm DP coils contained 400 m (2 × 200 m) HTS tape, while the 25 mm seamless DP coil consisted of only one continuous 200 m HTS tape. The 25 mm magnet with solder impregnation showed the best repeatability, although the current density was reduced owing to the solder thickness between the coil windings. Critical to the implementation of such coils in liquid helium is to effectively transfer high currents to the magnet, while not compromising the helium boil-off. Furthermore, the design of hybrid copper-HTS current leads capable of carrying current larger than 1000 A from room temperature to the HTS magnet at 4.2 K is presented. The implementation of liquid nitrogen-cooled hybrid copper-HTS current leads reduced the helium boil-off and permitted independent temperature control of the current leads.</description><subject>Barium compounds</subject><subject>Coils</subject><subject>Coils (windings)</subject><subject>Copper</subject><subject>Diameters</subject><subject>Double pancake (DP) coils</subject><subject>Gadolinium</subject><subject>Gyrotrons</subject><subject>Helium</subject><subject>High temperature superconductors</subject><subject>high-temperature superconductors (HTSs)</subject><subject>Insulation</subject><subject>Liquid helium</subject><subject>Liquid nitrogen</subject><subject>Magnets</subject><subject>NMR</subject><subject>no-insulation (NI) coils</subject><subject>Nuclear magnetic resonance</subject><subject>overband</subject><subject>Pancake coils</subject><subject>Room temperature</subject><subject>solder impregnation</subject><subject>Soldering</subject><subject>Solders</subject><subject>Temperature control</subject><subject>Winding</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmTTzbFG-wGtLbT3ZZPMamq6m-4mB_-9KfEgDMzAvM8MPAg9UjKhlKQvh9k-mzDC4gnniWQxvUIjKoSMmKDiup-JoJFkjN-iuxCOhNBYxmKEznOd-6rQbeUs3nlXQNl5CFjbEm-g-NK2X9Z43zWN823AzuAPF61s6OqBmdV1tChfsy1-c11eA95pW-hvwBv9aaEnKovX1bmrSryEuupO9-jG6DrAw18fo8P8_ZAto_V2scpm66hgadxGucwZ4Wk-ZUIQAwkwKXIhdClBJizRSVKWBoQEmuSGp5IwVupcmMIIyfsao-fhbOPduYPQqqPrvO0_KpZySWhKUtKn6JAqvAvBg1GNr07a_yhK1EWsuohVF7HqT2zPPA1MBQD_8nHMyZTxX_DedHI</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gao, Chukun</creator><creator>Chen, Pin-Hui</creator><creator>Alaniva, Nicholas</creator><creator>Snaedis Bjorgvinsdottir</creator><creator>Pagonakis, Ioannis</creator><creator>Dapp, Alexander</creator><creator>Urban, Michael</creator><creator>Gunzenhauser, Ronny</creator><creator>Barnes, Alexander</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3373-1582</orcidid><orcidid>https://orcid.org/0000-0002-9279-3196</orcidid><orcidid>https://orcid.org/0009-0005-5783-4887</orcidid><orcidid>https://orcid.org/0000-0003-3707-5391</orcidid><orcidid>https://orcid.org/0000-0002-8614-6304</orcidid><orcidid>https://orcid.org/0000-0001-9191-3048</orcidid></search><sort><creationdate>20240601</creationdate><title>Fabrication Procedures and Mechanical Supports of No-Insulation All-GdBCO Double Pancake Magnets in Liquid Helium</title><author>Gao, Chukun ; Chen, Pin-Hui ; Alaniva, Nicholas ; Snaedis Bjorgvinsdottir ; Pagonakis, Ioannis ; Dapp, Alexander ; Urban, Michael ; Gunzenhauser, Ronny ; Barnes, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-b8b2039b72550fe6e285b55ad8e8626a66ddfe58e16bf398022dab5fcf583583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barium compounds</topic><topic>Coils</topic><topic>Coils (windings)</topic><topic>Copper</topic><topic>Diameters</topic><topic>Double pancake (DP) coils</topic><topic>Gadolinium</topic><topic>Gyrotrons</topic><topic>Helium</topic><topic>High temperature superconductors</topic><topic>high-temperature superconductors (HTSs)</topic><topic>Insulation</topic><topic>Liquid helium</topic><topic>Liquid nitrogen</topic><topic>Magnets</topic><topic>NMR</topic><topic>no-insulation (NI) coils</topic><topic>Nuclear magnetic resonance</topic><topic>overband</topic><topic>Pancake coils</topic><topic>Room temperature</topic><topic>solder impregnation</topic><topic>Soldering</topic><topic>Solders</topic><topic>Temperature control</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Chukun</creatorcontrib><creatorcontrib>Chen, Pin-Hui</creatorcontrib><creatorcontrib>Alaniva, Nicholas</creatorcontrib><creatorcontrib>Snaedis Bjorgvinsdottir</creatorcontrib><creatorcontrib>Pagonakis, Ioannis</creatorcontrib><creatorcontrib>Dapp, Alexander</creatorcontrib><creatorcontrib>Urban, Michael</creatorcontrib><creatorcontrib>Gunzenhauser, Ronny</creatorcontrib><creatorcontrib>Barnes, Alexander</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Chukun</au><au>Chen, Pin-Hui</au><au>Alaniva, Nicholas</au><au>Snaedis Bjorgvinsdottir</au><au>Pagonakis, Ioannis</au><au>Dapp, Alexander</au><au>Urban, Michael</au><au>Gunzenhauser, Ronny</au><au>Barnes, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication Procedures and Mechanical Supports of No-Insulation All-GdBCO Double Pancake Magnets in Liquid Helium</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>34</volume><issue>4</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The no-insulation (NI) high-temperature superconductor (HTS) winding technique enables the fabrication of highly compact magnets with self-quench protection. NI pancake coils are implemented to develop a 28-T HTS magnet for the operation of a 792-GHz gyrotron, which is a microwave source for dynamic nuclear polarization nuclear magnetic resonance. To this end, three NI all-GdBCO double pancake (DP) magnets were fabricated using different winding diameters and procedures. The objective was to explore different mechanical coil protection mechanisms at high magnetic fields, including clamping, overband, and solder impregnation. Experiments in liquid helium using magnets with winding diameters of 18, 25, and 66 mm yielded a center field of 14.4, 11.2, and 8.1 T, respectively. The maximum currents applied to the DP magnets ranged from 780 to 1000 A. Both the 18 and 66 mm DP coils contained 400 m (2 × 200 m) HTS tape, while the 25 mm seamless DP coil consisted of only one continuous 200 m HTS tape. The 25 mm magnet with solder impregnation showed the best repeatability, although the current density was reduced owing to the solder thickness between the coil windings. Critical to the implementation of such coils in liquid helium is to effectively transfer high currents to the magnet, while not compromising the helium boil-off. Furthermore, the design of hybrid copper-HTS current leads capable of carrying current larger than 1000 A from room temperature to the HTS magnet at 4.2 K is presented. The implementation of liquid nitrogen-cooled hybrid copper-HTS current leads reduced the helium boil-off and permitted independent temperature control of the current leads.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3368241</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3373-1582</orcidid><orcidid>https://orcid.org/0000-0002-9279-3196</orcidid><orcidid>https://orcid.org/0009-0005-5783-4887</orcidid><orcidid>https://orcid.org/0000-0003-3707-5391</orcidid><orcidid>https://orcid.org/0000-0002-8614-6304</orcidid><orcidid>https://orcid.org/0000-0001-9191-3048</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-06, Vol.34 (4), p.1-9
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_10443072
source IEEE Xplore
subjects Barium compounds
Coils
Coils (windings)
Copper
Diameters
Double pancake (DP) coils
Gadolinium
Gyrotrons
Helium
High temperature superconductors
high-temperature superconductors (HTSs)
Insulation
Liquid helium
Liquid nitrogen
Magnets
NMR
no-insulation (NI) coils
Nuclear magnetic resonance
overband
Pancake coils
Room temperature
solder impregnation
Soldering
Solders
Temperature control
Winding
title Fabrication Procedures and Mechanical Supports of No-Insulation All-GdBCO Double Pancake Magnets in Liquid Helium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20Procedures%20and%20Mechanical%20Supports%20of%20No-Insulation%20All-GdBCO%20Double%20Pancake%20Magnets%20in%20Liquid%20Helium&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Gao,%20Chukun&rft.date=2024-06-01&rft.volume=34&rft.issue=4&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3368241&rft_dat=%3Cproquest_RIE%3E2938019090%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938019090&rft_id=info:pmid/&rft_ieee_id=10443072&rfr_iscdi=true