Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks

With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-06, Vol.11 (11), p.19470-19484
Hauptverfasser: Gao, Xiangqiang, Hu, Yingmeng, Shao, Yingzhao, Zhang, Hangyu, Liu, Yang, Liu, Rongke, Zhang, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19484
container_issue 11
container_start_page 19470
container_title IEEE internet of things journal
container_volume 11
creator Gao, Xiangqiang
Hu, Yingmeng
Shao, Yingzhao
Zhang, Hangyu
Liu, Yang
Liu, Rongke
Zhang, Jianhua
description With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge computing, it is still challenging to allocate the network resources on-demand for IoT users to improve service experience while reducing energy consumption, since user tasks may be offloaded between different satellites by inter-satellite links (ISLs). In this article, we study the joint optimization problem of computation offloading and resource allocation in cooperative satellite edge computing. Then, a hierarchical dynamic resource allocation (HDRA) algorithm for computation offloading is proposed by introducing breadth first search (BFS) and greedy to tackle the problem, the aim is to minimize service delay and energy consumption jointly. We conduct the experiments to evaluate the performance of the proposed HDRA algorithm, compared with two baselines of BFS-PSO and Gurobi. Experimental results show that the proposed HDRA algorithm can address the formulated problem effectively in satellite edge computing and obtain the results of computation offloading and resource allocation in a low running time.
doi_str_mv 10.1109/JIOT.2024.3367937
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10440447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10440447</ieee_id><sourcerecordid>3058292200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4b686c5da41a9be786f60f4f694ae211ca27e8aef5c9b2f67aa5c970768f2d0d3</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOOb-AMGHgM-dSZom7eOY002GBZ2PErL0opldM5MO2X9vR_cwOLjv4Pvujh9Ct5SMKSXFw8uiXI0ZYXycpkIWqbxAA5YymXAh2OWZvkajGDeEkC6W0UIM0OfcQdDBfDuja_x4aPTWGfwG0e-DATypa29063yDrQ946re7fdvPpbW115VrvrBr8HJW4nfdQl27FvArtH8-_MQbdGV1HWF06kP08TRbTefJsnxeTCfLxDAu2oSvRS5MVmlOdbEGmQsriOVWFFwDo9RoJiHXYDNTrJkVUutOSSJFbllFqnSI7vu9u-B_9xBbten-b7qTKiVZzgrGCOlctHeZ4GMMYNUuuK0OB0WJOoJUR5DqCFKdQHaZuz7jAODMz3lXMv0HZfhvrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058292200</pqid></control><display><type>article</type><title>Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Xiangqiang ; Hu, Yingmeng ; Shao, Yingzhao ; Zhang, Hangyu ; Liu, Yang ; Liu, Rongke ; Zhang, Jianhua</creator><creatorcontrib>Gao, Xiangqiang ; Hu, Yingmeng ; Shao, Yingzhao ; Zhang, Hangyu ; Liu, Yang ; Liu, Rongke ; Zhang, Jianhua</creatorcontrib><description>With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge computing, it is still challenging to allocate the network resources on-demand for IoT users to improve service experience while reducing energy consumption, since user tasks may be offloaded between different satellites by inter-satellite links (ISLs). In this article, we study the joint optimization problem of computation offloading and resource allocation in cooperative satellite edge computing. Then, a hierarchical dynamic resource allocation (HDRA) algorithm for computation offloading is proposed by introducing breadth first search (BFS) and greedy to tackle the problem, the aim is to minimize service delay and energy consumption jointly. We conduct the experiments to evaluate the performance of the proposed HDRA algorithm, compared with two baselines of BFS-PSO and Gurobi. Experimental results show that the proposed HDRA algorithm can address the formulated problem effectively in satellite edge computing and obtain the results of computation offloading and resource allocation in a low running time.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3367937</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computation offloading ; Computational modeling ; Delays ; Edge computing ; Energy consumption ; Internet of Things ; Intersatellite communications ; Low earth orbit satellites ; Low earth orbits ; Resource allocation ; Resource management ; Routing ; Satellite communications ; Satellite constellations ; satellite edge computing ; Satellite networks ; Satellites ; service delay</subject><ispartof>IEEE internet of things journal, 2024-06, Vol.11 (11), p.19470-19484</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-4b686c5da41a9be786f60f4f694ae211ca27e8aef5c9b2f67aa5c970768f2d0d3</cites><orcidid>0000-0001-5544-0124 ; 0000-0002-2289-6229 ; 0000-0002-0084-7864 ; 0000-0003-3098-8649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10440447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10440447$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Xiangqiang</creatorcontrib><creatorcontrib>Hu, Yingmeng</creatorcontrib><creatorcontrib>Shao, Yingzhao</creatorcontrib><creatorcontrib>Zhang, Hangyu</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Rongke</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><title>Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge computing, it is still challenging to allocate the network resources on-demand for IoT users to improve service experience while reducing energy consumption, since user tasks may be offloaded between different satellites by inter-satellite links (ISLs). In this article, we study the joint optimization problem of computation offloading and resource allocation in cooperative satellite edge computing. Then, a hierarchical dynamic resource allocation (HDRA) algorithm for computation offloading is proposed by introducing breadth first search (BFS) and greedy to tackle the problem, the aim is to minimize service delay and energy consumption jointly. We conduct the experiments to evaluate the performance of the proposed HDRA algorithm, compared with two baselines of BFS-PSO and Gurobi. Experimental results show that the proposed HDRA algorithm can address the formulated problem effectively in satellite edge computing and obtain the results of computation offloading and resource allocation in a low running time.</description><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Internet of Things</subject><subject>Intersatellite communications</subject><subject>Low earth orbit satellites</subject><subject>Low earth orbits</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Routing</subject><subject>Satellite communications</subject><subject>Satellite constellations</subject><subject>satellite edge computing</subject><subject>Satellite networks</subject><subject>Satellites</subject><subject>service delay</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxoMoOOb-AMGHgM-dSZom7eOY002GBZ2PErL0opldM5MO2X9vR_cwOLjv4Pvujh9Ct5SMKSXFw8uiXI0ZYXycpkIWqbxAA5YymXAh2OWZvkajGDeEkC6W0UIM0OfcQdDBfDuja_x4aPTWGfwG0e-DATypa29063yDrQ946re7fdvPpbW115VrvrBr8HJW4nfdQl27FvArtH8-_MQbdGV1HWF06kP08TRbTefJsnxeTCfLxDAu2oSvRS5MVmlOdbEGmQsriOVWFFwDo9RoJiHXYDNTrJkVUutOSSJFbllFqnSI7vu9u-B_9xBbten-b7qTKiVZzgrGCOlctHeZ4GMMYNUuuK0OB0WJOoJUR5DqCFKdQHaZuz7jAODMz3lXMv0HZfhvrg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gao, Xiangqiang</creator><creator>Hu, Yingmeng</creator><creator>Shao, Yingzhao</creator><creator>Zhang, Hangyu</creator><creator>Liu, Yang</creator><creator>Liu, Rongke</creator><creator>Zhang, Jianhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5544-0124</orcidid><orcidid>https://orcid.org/0000-0002-2289-6229</orcidid><orcidid>https://orcid.org/0000-0002-0084-7864</orcidid><orcidid>https://orcid.org/0000-0003-3098-8649</orcidid></search><sort><creationdate>20240601</creationdate><title>Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks</title><author>Gao, Xiangqiang ; Hu, Yingmeng ; Shao, Yingzhao ; Zhang, Hangyu ; Liu, Yang ; Liu, Rongke ; Zhang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4b686c5da41a9be786f60f4f694ae211ca27e8aef5c9b2f67aa5c970768f2d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Internet of Things</topic><topic>Intersatellite communications</topic><topic>Low earth orbit satellites</topic><topic>Low earth orbits</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Routing</topic><topic>Satellite communications</topic><topic>Satellite constellations</topic><topic>satellite edge computing</topic><topic>Satellite networks</topic><topic>Satellites</topic><topic>service delay</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xiangqiang</creatorcontrib><creatorcontrib>Hu, Yingmeng</creatorcontrib><creatorcontrib>Shao, Yingzhao</creatorcontrib><creatorcontrib>Zhang, Hangyu</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Rongke</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Xiangqiang</au><au>Hu, Yingmeng</au><au>Shao, Yingzhao</au><au>Zhang, Hangyu</au><au>Liu, Yang</au><au>Liu, Rongke</au><au>Zhang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>11</volume><issue>11</issue><spage>19470</spage><epage>19484</epage><pages>19470-19484</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge computing, it is still challenging to allocate the network resources on-demand for IoT users to improve service experience while reducing energy consumption, since user tasks may be offloaded between different satellites by inter-satellite links (ISLs). In this article, we study the joint optimization problem of computation offloading and resource allocation in cooperative satellite edge computing. Then, a hierarchical dynamic resource allocation (HDRA) algorithm for computation offloading is proposed by introducing breadth first search (BFS) and greedy to tackle the problem, the aim is to minimize service delay and energy consumption jointly. We conduct the experiments to evaluate the performance of the proposed HDRA algorithm, compared with two baselines of BFS-PSO and Gurobi. Experimental results show that the proposed HDRA algorithm can address the formulated problem effectively in satellite edge computing and obtain the results of computation offloading and resource allocation in a low running time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3367937</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5544-0124</orcidid><orcidid>https://orcid.org/0000-0002-2289-6229</orcidid><orcidid>https://orcid.org/0000-0002-0084-7864</orcidid><orcidid>https://orcid.org/0000-0003-3098-8649</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-06, Vol.11 (11), p.19470-19484
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10440447
source IEEE Electronic Library (IEL)
subjects Algorithms
Computation offloading
Computational modeling
Delays
Edge computing
Energy consumption
Internet of Things
Intersatellite communications
Low earth orbit satellites
Low earth orbits
Resource allocation
Resource management
Routing
Satellite communications
Satellite constellations
satellite edge computing
Satellite networks
Satellites
service delay
title Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Dynamic%20Resource%20Allocation%20for%20Computation%20Offloading%20in%20LEO%20Satellite%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Gao,%20Xiangqiang&rft.date=2024-06-01&rft.volume=11&rft.issue=11&rft.spage=19470&rft.epage=19484&rft.pages=19470-19484&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3367937&rft_dat=%3Cproquest_RIE%3E3058292200%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058292200&rft_id=info:pmid/&rft_ieee_id=10440447&rfr_iscdi=true