Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks
With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge comp...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-06, Vol.11 (11), p.19470-19484 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19484 |
---|---|
container_issue | 11 |
container_start_page | 19470 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Gao, Xiangqiang Hu, Yingmeng Shao, Yingzhao Zhang, Hangyu Liu, Yang Liu, Rongke Zhang, Jianhua |
description | With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge computing, it is still challenging to allocate the network resources on-demand for IoT users to improve service experience while reducing energy consumption, since user tasks may be offloaded between different satellites by inter-satellite links (ISLs). In this article, we study the joint optimization problem of computation offloading and resource allocation in cooperative satellite edge computing. Then, a hierarchical dynamic resource allocation (HDRA) algorithm for computation offloading is proposed by introducing breadth first search (BFS) and greedy to tackle the problem, the aim is to minimize service delay and energy consumption jointly. We conduct the experiments to evaluate the performance of the proposed HDRA algorithm, compared with two baselines of BFS-PSO and Gurobi. Experimental results show that the proposed HDRA algorithm can address the formulated problem effectively in satellite edge computing and obtain the results of computation offloading and resource allocation in a low running time. |
doi_str_mv | 10.1109/JIOT.2024.3367937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10440447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10440447</ieee_id><sourcerecordid>3058292200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-4b686c5da41a9be786f60f4f694ae211ca27e8aef5c9b2f67aa5c970768f2d0d3</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOOb-AMGHgM-dSZom7eOY002GBZ2PErL0opldM5MO2X9vR_cwOLjv4Pvujh9Ct5SMKSXFw8uiXI0ZYXycpkIWqbxAA5YymXAh2OWZvkajGDeEkC6W0UIM0OfcQdDBfDuja_x4aPTWGfwG0e-DATypa29063yDrQ946re7fdvPpbW115VrvrBr8HJW4nfdQl27FvArtH8-_MQbdGV1HWF06kP08TRbTefJsnxeTCfLxDAu2oSvRS5MVmlOdbEGmQsriOVWFFwDo9RoJiHXYDNTrJkVUutOSSJFbllFqnSI7vu9u-B_9xBbten-b7qTKiVZzgrGCOlctHeZ4GMMYNUuuK0OB0WJOoJUR5DqCFKdQHaZuz7jAODMz3lXMv0HZfhvrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058292200</pqid></control><display><type>article</type><title>Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Xiangqiang ; Hu, Yingmeng ; Shao, Yingzhao ; Zhang, Hangyu ; Liu, Yang ; Liu, Rongke ; Zhang, Jianhua</creator><creatorcontrib>Gao, Xiangqiang ; Hu, Yingmeng ; Shao, Yingzhao ; Zhang, Hangyu ; Liu, Yang ; Liu, Rongke ; Zhang, Jianhua</creatorcontrib><description>With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge computing, it is still challenging to allocate the network resources on-demand for IoT users to improve service experience while reducing energy consumption, since user tasks may be offloaded between different satellites by inter-satellite links (ISLs). In this article, we study the joint optimization problem of computation offloading and resource allocation in cooperative satellite edge computing. Then, a hierarchical dynamic resource allocation (HDRA) algorithm for computation offloading is proposed by introducing breadth first search (BFS) and greedy to tackle the problem, the aim is to minimize service delay and energy consumption jointly. We conduct the experiments to evaluate the performance of the proposed HDRA algorithm, compared with two baselines of BFS-PSO and Gurobi. Experimental results show that the proposed HDRA algorithm can address the formulated problem effectively in satellite edge computing and obtain the results of computation offloading and resource allocation in a low running time.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3367937</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Computation offloading ; Computational modeling ; Delays ; Edge computing ; Energy consumption ; Internet of Things ; Intersatellite communications ; Low earth orbit satellites ; Low earth orbits ; Resource allocation ; Resource management ; Routing ; Satellite communications ; Satellite constellations ; satellite edge computing ; Satellite networks ; Satellites ; service delay</subject><ispartof>IEEE internet of things journal, 2024-06, Vol.11 (11), p.19470-19484</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-4b686c5da41a9be786f60f4f694ae211ca27e8aef5c9b2f67aa5c970768f2d0d3</cites><orcidid>0000-0001-5544-0124 ; 0000-0002-2289-6229 ; 0000-0002-0084-7864 ; 0000-0003-3098-8649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10440447$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10440447$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Xiangqiang</creatorcontrib><creatorcontrib>Hu, Yingmeng</creatorcontrib><creatorcontrib>Shao, Yingzhao</creatorcontrib><creatorcontrib>Zhang, Hangyu</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Rongke</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><title>Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge computing, it is still challenging to allocate the network resources on-demand for IoT users to improve service experience while reducing energy consumption, since user tasks may be offloaded between different satellites by inter-satellite links (ISLs). In this article, we study the joint optimization problem of computation offloading and resource allocation in cooperative satellite edge computing. Then, a hierarchical dynamic resource allocation (HDRA) algorithm for computation offloading is proposed by introducing breadth first search (BFS) and greedy to tackle the problem, the aim is to minimize service delay and energy consumption jointly. We conduct the experiments to evaluate the performance of the proposed HDRA algorithm, compared with two baselines of BFS-PSO and Gurobi. Experimental results show that the proposed HDRA algorithm can address the formulated problem effectively in satellite edge computing and obtain the results of computation offloading and resource allocation in a low running time.</description><subject>Algorithms</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Internet of Things</subject><subject>Intersatellite communications</subject><subject>Low earth orbit satellites</subject><subject>Low earth orbits</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Routing</subject><subject>Satellite communications</subject><subject>Satellite constellations</subject><subject>satellite edge computing</subject><subject>Satellite networks</subject><subject>Satellites</subject><subject>service delay</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxoMoOOb-AMGHgM-dSZom7eOY002GBZ2PErL0opldM5MO2X9vR_cwOLjv4Pvujh9Ct5SMKSXFw8uiXI0ZYXycpkIWqbxAA5YymXAh2OWZvkajGDeEkC6W0UIM0OfcQdDBfDuja_x4aPTWGfwG0e-DATypa29063yDrQ946re7fdvPpbW115VrvrBr8HJW4nfdQl27FvArtH8-_MQbdGV1HWF06kP08TRbTefJsnxeTCfLxDAu2oSvRS5MVmlOdbEGmQsriOVWFFwDo9RoJiHXYDNTrJkVUutOSSJFbllFqnSI7vu9u-B_9xBbten-b7qTKiVZzgrGCOlctHeZ4GMMYNUuuK0OB0WJOoJUR5DqCFKdQHaZuz7jAODMz3lXMv0HZfhvrg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Gao, Xiangqiang</creator><creator>Hu, Yingmeng</creator><creator>Shao, Yingzhao</creator><creator>Zhang, Hangyu</creator><creator>Liu, Yang</creator><creator>Liu, Rongke</creator><creator>Zhang, Jianhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5544-0124</orcidid><orcidid>https://orcid.org/0000-0002-2289-6229</orcidid><orcidid>https://orcid.org/0000-0002-0084-7864</orcidid><orcidid>https://orcid.org/0000-0003-3098-8649</orcidid></search><sort><creationdate>20240601</creationdate><title>Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks</title><author>Gao, Xiangqiang ; Hu, Yingmeng ; Shao, Yingzhao ; Zhang, Hangyu ; Liu, Yang ; Liu, Rongke ; Zhang, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-4b686c5da41a9be786f60f4f694ae211ca27e8aef5c9b2f67aa5c970768f2d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Internet of Things</topic><topic>Intersatellite communications</topic><topic>Low earth orbit satellites</topic><topic>Low earth orbits</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Routing</topic><topic>Satellite communications</topic><topic>Satellite constellations</topic><topic>satellite edge computing</topic><topic>Satellite networks</topic><topic>Satellites</topic><topic>service delay</topic><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xiangqiang</creatorcontrib><creatorcontrib>Hu, Yingmeng</creatorcontrib><creatorcontrib>Shao, Yingzhao</creatorcontrib><creatorcontrib>Zhang, Hangyu</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Rongke</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Xiangqiang</au><au>Hu, Yingmeng</au><au>Shao, Yingzhao</au><au>Zhang, Hangyu</au><au>Liu, Yang</au><au>Liu, Rongke</au><au>Zhang, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>11</volume><issue>11</issue><spage>19470</spage><epage>19484</epage><pages>19470-19484</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>With the rapid development of large low Earth orbit (LEO) satellite constellations, satellite edge computing is an emerging topic to provide computing services for Internet of Things (IoT) users, which are not in the coverage of terrestrial networks. For computation offloading in satellite edge computing, it is still challenging to allocate the network resources on-demand for IoT users to improve service experience while reducing energy consumption, since user tasks may be offloaded between different satellites by inter-satellite links (ISLs). In this article, we study the joint optimization problem of computation offloading and resource allocation in cooperative satellite edge computing. Then, a hierarchical dynamic resource allocation (HDRA) algorithm for computation offloading is proposed by introducing breadth first search (BFS) and greedy to tackle the problem, the aim is to minimize service delay and energy consumption jointly. We conduct the experiments to evaluate the performance of the proposed HDRA algorithm, compared with two baselines of BFS-PSO and Gurobi. Experimental results show that the proposed HDRA algorithm can address the formulated problem effectively in satellite edge computing and obtain the results of computation offloading and resource allocation in a low running time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3367937</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5544-0124</orcidid><orcidid>https://orcid.org/0000-0002-2289-6229</orcidid><orcidid>https://orcid.org/0000-0002-0084-7864</orcidid><orcidid>https://orcid.org/0000-0003-3098-8649</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-06, Vol.11 (11), p.19470-19484 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10440447 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computation offloading Computational modeling Delays Edge computing Energy consumption Internet of Things Intersatellite communications Low earth orbit satellites Low earth orbits Resource allocation Resource management Routing Satellite communications Satellite constellations satellite edge computing Satellite networks Satellites service delay |
title | Hierarchical Dynamic Resource Allocation for Computation Offloading in LEO Satellite Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Dynamic%20Resource%20Allocation%20for%20Computation%20Offloading%20in%20LEO%20Satellite%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Gao,%20Xiangqiang&rft.date=2024-06-01&rft.volume=11&rft.issue=11&rft.spage=19470&rft.epage=19484&rft.pages=19470-19484&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3367937&rft_dat=%3Cproquest_RIE%3E3058292200%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058292200&rft_id=info:pmid/&rft_ieee_id=10440447&rfr_iscdi=true |