End-to-End Bayesian Networks Exact Learning in Shared Memory

Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is \mathcal {NP} NP -hard and computationally challenging. In this article, we propose practical parallel exact algorithms to l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2024-04, Vol.35 (4), p.634-645
Hauptverfasser: Karan, Subhadeep, Sayed, Zainul Abideen, Zola, Jaroslaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 4
container_start_page 634
container_title IEEE transactions on parallel and distributed systems
container_volume 35
creator Karan, Subhadeep
Sayed, Zainul Abideen
Zola, Jaroslaw
description Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is \mathcal {NP} NP -hard and computationally challenging. In this article, we propose practical parallel exact algorithms to learn Bayesian networks from data. Our approach uses shared-memory task parallelism to realize exploration of dynamic programming lattices emerging in Bayesian networks structure learning, and introduces several optimization techniques to constraint and partition the underlying search space. Through extensive experimental testing we show that the resulting method is highly scalable, and it can be used to efficiently learn large globally optimal networks.
doi_str_mv 10.1109/TPDS.2024.3366471
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10440323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10440323</ieee_id><sourcerecordid>2938023497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-46257238ea9ddeb3b122224ce44ad1e7b3c38944e7eb29ddc198b15c6cdac6f3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4Dk1k8x-BLxorR-wfkB7D9nsVLfa3Zps0f57U9qDc3nn8Lwz8DB2DmIEIPTV7O1uOpJC4kipLMMcDtgA0rTgEgp1GHeBKdcS9DE7CWEhBGAqcMCuJ23N-47HSG7thkJj2-SF-p_Of4Zk8mtdn5Rkfdu070nTJtMP66lOnmnZ-c0pO5rbr0Bn-xyy2f1kNn7k5evD0_im5E5i1nPMZJpLVZDVdU2VqkDGQUeItgbKK-VUoREpp0pGxIEuKkhd5mrrsrkassvd2ZXvvtcUerPo1r6NH43UqhBSoc4jBTvK-S4ET3Oz8s3S-o0BYbaOzNaR2Toye0exc7HrNET0j0cUSir1BwpRYak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938023497</pqid></control><display><type>article</type><title>End-to-End Bayesian Networks Exact Learning in Shared Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Karan, Subhadeep ; Sayed, Zainul Abideen ; Zola, Jaroslaw</creator><creatorcontrib>Karan, Subhadeep ; Sayed, Zainul Abideen ; Zola, Jaroslaw</creatorcontrib><description><![CDATA[Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi></mml:math><inline-graphic xlink:href="zola-ieq1-3366471.gif"/> </inline-formula>-hard and computationally challenging. In this article, we propose practical parallel exact algorithms to learn Bayesian networks from data. Our approach uses shared-memory task parallelism to realize exploration of dynamic programming lattices emerging in Bayesian networks structure learning, and introduces several optimization techniques to constraint and partition the underlying search space. Through extensive experimental testing we show that the resulting method is highly scalable, and it can be used to efficiently learn large globally optimal networks.]]></description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2024.3366471</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Bayesian networks ; Bioinformatics ; Directed acyclic graph ; Dynamic programming ; exact learning ; Lattices ; Machine learning ; Memory tasks ; Networks ; Optimization ; Search problems ; Task analysis ; task parallelism</subject><ispartof>IEEE transactions on parallel and distributed systems, 2024-04, Vol.35 (4), p.634-645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-46257238ea9ddeb3b122224ce44ad1e7b3c38944e7eb29ddc198b15c6cdac6f3</cites><orcidid>0000-0002-1686-9697 ; 0009-0009-1019-2775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10440323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10440323$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karan, Subhadeep</creatorcontrib><creatorcontrib>Sayed, Zainul Abideen</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><title>End-to-End Bayesian Networks Exact Learning in Shared Memory</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description><![CDATA[Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi></mml:math><inline-graphic xlink:href="zola-ieq1-3366471.gif"/> </inline-formula>-hard and computationally challenging. In this article, we propose practical parallel exact algorithms to learn Bayesian networks from data. Our approach uses shared-memory task parallelism to realize exploration of dynamic programming lattices emerging in Bayesian networks structure learning, and introduces several optimization techniques to constraint and partition the underlying search space. Through extensive experimental testing we show that the resulting method is highly scalable, and it can be used to efficiently learn large globally optimal networks.]]></description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>Bioinformatics</subject><subject>Directed acyclic graph</subject><subject>Dynamic programming</subject><subject>exact learning</subject><subject>Lattices</subject><subject>Machine learning</subject><subject>Memory tasks</subject><subject>Networks</subject><subject>Optimization</subject><subject>Search problems</subject><subject>Task analysis</subject><subject>task parallelism</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4Dk1k8x-BLxorR-wfkB7D9nsVLfa3Zps0f57U9qDc3nn8Lwz8DB2DmIEIPTV7O1uOpJC4kipLMMcDtgA0rTgEgp1GHeBKdcS9DE7CWEhBGAqcMCuJ23N-47HSG7thkJj2-SF-p_Of4Zk8mtdn5Rkfdu070nTJtMP66lOnmnZ-c0pO5rbr0Bn-xyy2f1kNn7k5evD0_im5E5i1nPMZJpLVZDVdU2VqkDGQUeItgbKK-VUoREpp0pGxIEuKkhd5mrrsrkassvd2ZXvvtcUerPo1r6NH43UqhBSoc4jBTvK-S4ET3Oz8s3S-o0BYbaOzNaR2Toye0exc7HrNET0j0cUSir1BwpRYak</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Karan, Subhadeep</creator><creator>Sayed, Zainul Abideen</creator><creator>Zola, Jaroslaw</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1686-9697</orcidid><orcidid>https://orcid.org/0009-0009-1019-2775</orcidid></search><sort><creationdate>20240401</creationdate><title>End-to-End Bayesian Networks Exact Learning in Shared Memory</title><author>Karan, Subhadeep ; Sayed, Zainul Abideen ; Zola, Jaroslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-46257238ea9ddeb3b122224ce44ad1e7b3c38944e7eb29ddc198b15c6cdac6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>Bioinformatics</topic><topic>Directed acyclic graph</topic><topic>Dynamic programming</topic><topic>exact learning</topic><topic>Lattices</topic><topic>Machine learning</topic><topic>Memory tasks</topic><topic>Networks</topic><topic>Optimization</topic><topic>Search problems</topic><topic>Task analysis</topic><topic>task parallelism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karan, Subhadeep</creatorcontrib><creatorcontrib>Sayed, Zainul Abideen</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karan, Subhadeep</au><au>Sayed, Zainul Abideen</au><au>Zola, Jaroslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>End-to-End Bayesian Networks Exact Learning in Shared Memory</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>4</issue><spage>634</spage><epage>645</epage><pages>634-645</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract><![CDATA[Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi></mml:math><inline-graphic xlink:href="zola-ieq1-3366471.gif"/> </inline-formula>-hard and computationally challenging. In this article, we propose practical parallel exact algorithms to learn Bayesian networks from data. Our approach uses shared-memory task parallelism to realize exploration of dynamic programming lattices emerging in Bayesian networks structure learning, and introduces several optimization techniques to constraint and partition the underlying search space. Through extensive experimental testing we show that the resulting method is highly scalable, and it can be used to efficiently learn large globally optimal networks.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2024.3366471</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1686-9697</orcidid><orcidid>https://orcid.org/0009-0009-1019-2775</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2024-04, Vol.35 (4), p.634-645
issn 1045-9219
1558-2183
language eng
recordid cdi_ieee_primary_10440323
source IEEE Electronic Library (IEL)
subjects Algorithms
Bayes methods
Bayesian analysis
Bayesian networks
Bioinformatics
Directed acyclic graph
Dynamic programming
exact learning
Lattices
Machine learning
Memory tasks
Networks
Optimization
Search problems
Task analysis
task parallelism
title End-to-End Bayesian Networks Exact Learning in Shared Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=End-to-End%20Bayesian%20Networks%20Exact%20Learning%20in%20Shared%20Memory&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Karan,%20Subhadeep&rft.date=2024-04-01&rft.volume=35&rft.issue=4&rft.spage=634&rft.epage=645&rft.pages=634-645&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2024.3366471&rft_dat=%3Cproquest_RIE%3E2938023497%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938023497&rft_id=info:pmid/&rft_ieee_id=10440323&rfr_iscdi=true