End-to-End Bayesian Networks Exact Learning in Shared Memory
Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is \mathcal {NP} NP -hard and computationally challenging. In this article, we propose practical parallel exact algorithms to l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2024-04, Vol.35 (4), p.634-645 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 4 |
container_start_page | 634 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 35 |
creator | Karan, Subhadeep Sayed, Zainul Abideen Zola, Jaroslaw |
description | Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is \mathcal {NP} NP -hard and computationally challenging. In this article, we propose practical parallel exact algorithms to learn Bayesian networks from data. Our approach uses shared-memory task parallelism to realize exploration of dynamic programming lattices emerging in Bayesian networks structure learning, and introduces several optimization techniques to constraint and partition the underlying search space. Through extensive experimental testing we show that the resulting method is highly scalable, and it can be used to efficiently learn large globally optimal networks. |
doi_str_mv | 10.1109/TPDS.2024.3366471 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10440323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10440323</ieee_id><sourcerecordid>2938023497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-46257238ea9ddeb3b122224ce44ad1e7b3c38944e7eb29ddc198b15c6cdac6f3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4Dk1k8x-BLxorR-wfkB7D9nsVLfa3Zps0f57U9qDc3nn8Lwz8DB2DmIEIPTV7O1uOpJC4kipLMMcDtgA0rTgEgp1GHeBKdcS9DE7CWEhBGAqcMCuJ23N-47HSG7thkJj2-SF-p_Of4Zk8mtdn5Rkfdu070nTJtMP66lOnmnZ-c0pO5rbr0Bn-xyy2f1kNn7k5evD0_im5E5i1nPMZJpLVZDVdU2VqkDGQUeItgbKK-VUoREpp0pGxIEuKkhd5mrrsrkassvd2ZXvvtcUerPo1r6NH43UqhBSoc4jBTvK-S4ET3Oz8s3S-o0BYbaOzNaR2Toye0exc7HrNET0j0cUSir1BwpRYak</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938023497</pqid></control><display><type>article</type><title>End-to-End Bayesian Networks Exact Learning in Shared Memory</title><source>IEEE Electronic Library (IEL)</source><creator>Karan, Subhadeep ; Sayed, Zainul Abideen ; Zola, Jaroslaw</creator><creatorcontrib>Karan, Subhadeep ; Sayed, Zainul Abideen ; Zola, Jaroslaw</creatorcontrib><description><![CDATA[Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi></mml:math><inline-graphic xlink:href="zola-ieq1-3366471.gif"/> </inline-formula>-hard and computationally challenging. In this article, we propose practical parallel exact algorithms to learn Bayesian networks from data. Our approach uses shared-memory task parallelism to realize exploration of dynamic programming lattices emerging in Bayesian networks structure learning, and introduces several optimization techniques to constraint and partition the underlying search space. Through extensive experimental testing we show that the resulting method is highly scalable, and it can be used to efficiently learn large globally optimal networks.]]></description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2024.3366471</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Bayes methods ; Bayesian analysis ; Bayesian networks ; Bioinformatics ; Directed acyclic graph ; Dynamic programming ; exact learning ; Lattices ; Machine learning ; Memory tasks ; Networks ; Optimization ; Search problems ; Task analysis ; task parallelism</subject><ispartof>IEEE transactions on parallel and distributed systems, 2024-04, Vol.35 (4), p.634-645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-46257238ea9ddeb3b122224ce44ad1e7b3c38944e7eb29ddc198b15c6cdac6f3</cites><orcidid>0000-0002-1686-9697 ; 0009-0009-1019-2775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10440323$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10440323$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karan, Subhadeep</creatorcontrib><creatorcontrib>Sayed, Zainul Abideen</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><title>End-to-End Bayesian Networks Exact Learning in Shared Memory</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description><![CDATA[Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi></mml:math><inline-graphic xlink:href="zola-ieq1-3366471.gif"/> </inline-formula>-hard and computationally challenging. In this article, we propose practical parallel exact algorithms to learn Bayesian networks from data. Our approach uses shared-memory task parallelism to realize exploration of dynamic programming lattices emerging in Bayesian networks structure learning, and introduces several optimization techniques to constraint and partition the underlying search space. Through extensive experimental testing we show that the resulting method is highly scalable, and it can be used to efficiently learn large globally optimal networks.]]></description><subject>Algorithms</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian networks</subject><subject>Bioinformatics</subject><subject>Directed acyclic graph</subject><subject>Dynamic programming</subject><subject>exact learning</subject><subject>Lattices</subject><subject>Machine learning</subject><subject>Memory tasks</subject><subject>Networks</subject><subject>Optimization</subject><subject>Search problems</subject><subject>Task analysis</subject><subject>task parallelism</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4Dk1k8x-BLxorR-wfkB7D9nsVLfa3Zps0f57U9qDc3nn8Lwz8DB2DmIEIPTV7O1uOpJC4kipLMMcDtgA0rTgEgp1GHeBKdcS9DE7CWEhBGAqcMCuJ23N-47HSG7thkJj2-SF-p_Of4Zk8mtdn5Rkfdu070nTJtMP66lOnmnZ-c0pO5rbr0Bn-xyy2f1kNn7k5evD0_im5E5i1nPMZJpLVZDVdU2VqkDGQUeItgbKK-VUoREpp0pGxIEuKkhd5mrrsrkassvd2ZXvvtcUerPo1r6NH43UqhBSoc4jBTvK-S4ET3Oz8s3S-o0BYbaOzNaR2Toye0exc7HrNET0j0cUSir1BwpRYak</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Karan, Subhadeep</creator><creator>Sayed, Zainul Abideen</creator><creator>Zola, Jaroslaw</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1686-9697</orcidid><orcidid>https://orcid.org/0009-0009-1019-2775</orcidid></search><sort><creationdate>20240401</creationdate><title>End-to-End Bayesian Networks Exact Learning in Shared Memory</title><author>Karan, Subhadeep ; Sayed, Zainul Abideen ; Zola, Jaroslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-46257238ea9ddeb3b122224ce44ad1e7b3c38944e7eb29ddc198b15c6cdac6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian networks</topic><topic>Bioinformatics</topic><topic>Directed acyclic graph</topic><topic>Dynamic programming</topic><topic>exact learning</topic><topic>Lattices</topic><topic>Machine learning</topic><topic>Memory tasks</topic><topic>Networks</topic><topic>Optimization</topic><topic>Search problems</topic><topic>Task analysis</topic><topic>task parallelism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karan, Subhadeep</creatorcontrib><creatorcontrib>Sayed, Zainul Abideen</creatorcontrib><creatorcontrib>Zola, Jaroslaw</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karan, Subhadeep</au><au>Sayed, Zainul Abideen</au><au>Zola, Jaroslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>End-to-End Bayesian Networks Exact Learning in Shared Memory</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>35</volume><issue>4</issue><spage>634</spage><epage>645</epage><pages>634-645</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract><![CDATA[Bayesian networks are important Machine Learning models with many practical applications in, e.g., biomedicine and bioinformatics. The problem of Bayesian networks learning is <inline-formula><tex-math notation="LaTeX">\mathcal {NP}</tex-math> <mml:math><mml:mi mathvariant="script">NP</mml:mi></mml:math><inline-graphic xlink:href="zola-ieq1-3366471.gif"/> </inline-formula>-hard and computationally challenging. In this article, we propose practical parallel exact algorithms to learn Bayesian networks from data. Our approach uses shared-memory task parallelism to realize exploration of dynamic programming lattices emerging in Bayesian networks structure learning, and introduces several optimization techniques to constraint and partition the underlying search space. Through extensive experimental testing we show that the resulting method is highly scalable, and it can be used to efficiently learn large globally optimal networks.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2024.3366471</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1686-9697</orcidid><orcidid>https://orcid.org/0009-0009-1019-2775</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2024-04, Vol.35 (4), p.634-645 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_ieee_primary_10440323 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bayes methods Bayesian analysis Bayesian networks Bioinformatics Directed acyclic graph Dynamic programming exact learning Lattices Machine learning Memory tasks Networks Optimization Search problems Task analysis task parallelism |
title | End-to-End Bayesian Networks Exact Learning in Shared Memory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=End-to-End%20Bayesian%20Networks%20Exact%20Learning%20in%20Shared%20Memory&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Karan,%20Subhadeep&rft.date=2024-04-01&rft.volume=35&rft.issue=4&rft.spage=634&rft.epage=645&rft.pages=634-645&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2024.3366471&rft_dat=%3Cproquest_RIE%3E2938023497%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938023497&rft_id=info:pmid/&rft_ieee_id=10440323&rfr_iscdi=true |