Learning Multipursuit Evasion for Safe Targeted Navigation of Drones

Safe navigation of drones in the presence of adversarial physical attacks from multiple pursuers is a challenging task. This article proposes a novel approach, asynchronous multistage deep reinforcement learning (AMS-DRL), to train adversarial neural networks that can learn from the actions of multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on artificial intelligence 2024-12, Vol.5 (12), p.6210-6224
Hauptverfasser: Xiao, Jiaping, Feroskhan, Mir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6224
container_issue 12
container_start_page 6210
container_title IEEE transactions on artificial intelligence
container_volume 5
creator Xiao, Jiaping
Feroskhan, Mir
description Safe navigation of drones in the presence of adversarial physical attacks from multiple pursuers is a challenging task. This article proposes a novel approach, asynchronous multistage deep reinforcement learning (AMS-DRL), to train adversarial neural networks that can learn from the actions of multiple evolved pursuers and adapt quickly to their behavior, enabling the drone to avoid attacks and reach its target. Specifically, AMS-DRL evolves adversarial agents in a pursuit-evasion game (PEG) where the pursuers and the evader are asynchronously trained in a bipartite graph way during multiple stages. Our approach guarantees convergence by ensuring Nash equilibrium (NE) among agents from the game-theory analysis. We evaluate our method in extensive simulations and show that it outperforms baselines with higher navigation success rates (SRs). We also analyze how parameters such as the relative maximum speed affect navigation performance. Furthermore, we have conducted physical experiments and validated the effectiveness of the trained policies in real-time flights. A SR heatmap is introduced to elucidate how spatial geometry influences navigation outcomes.
doi_str_mv 10.1109/TAI.2024.3366871
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10439240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10439240</ieee_id><sourcerecordid>10_1109_TAI_2024_3366871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620-abb7078caec9a47a80c419d9be2b1defff5d68a96360dd0fe721f2b18909b1693</originalsourceid><addsrcrecordid>eNpNkL1ugzAUha2qlRql2Tt08AtArw0YPEZJ2kSi7VB2dIFr5CqFyIZIffuCkiHTOdL5GT7GngWEQoB-LdaHUIKMwyhSKkvFHVtIpUUQJ5m4v_GPbOX9DwDIREgp0wXb5oSus13LP8bjYE-j86Md-O6M3vYdN73j32iIF-haGqjhn3i2LQ5z2Bu-dX1H_ok9GDx6Wl11yYq3XbHZB_nX-2GzzoNaSQiwqlJIsxqp1hinmEEdC93oimQlGjLGJI3KUKtIQdOAoVQKM0WZBl0JpaMlg8tt7XrvHZny5Owvur9SQDlzKCcO5cyhvHKYJi-XiSWim3ocaRlD9A9kfVm5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Learning Multipursuit Evasion for Safe Targeted Navigation of Drones</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Jiaping ; Feroskhan, Mir</creator><creatorcontrib>Xiao, Jiaping ; Feroskhan, Mir</creatorcontrib><description>Safe navigation of drones in the presence of adversarial physical attacks from multiple pursuers is a challenging task. This article proposes a novel approach, asynchronous multistage deep reinforcement learning (AMS-DRL), to train adversarial neural networks that can learn from the actions of multiple evolved pursuers and adapt quickly to their behavior, enabling the drone to avoid attacks and reach its target. Specifically, AMS-DRL evolves adversarial agents in a pursuit-evasion game (PEG) where the pursuers and the evader are asynchronously trained in a bipartite graph way during multiple stages. Our approach guarantees convergence by ensuring Nash equilibrium (NE) among agents from the game-theory analysis. We evaluate our method in extensive simulations and show that it outperforms baselines with higher navigation success rates (SRs). We also analyze how parameters such as the relative maximum speed affect navigation performance. Furthermore, we have conducted physical experiments and validated the effectiveness of the trained policies in real-time flights. A SR heatmap is introduced to elucidate how spatial geometry influences navigation outcomes.</description><identifier>ISSN: 2691-4581</identifier><identifier>EISSN: 2691-4581</identifier><identifier>DOI: 10.1109/TAI.2024.3366871</identifier><identifier>CODEN: ITAICB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collision avoidance ; Deep reinforcement learning ; Deep reinforcement learning (DRL) ; Drones ; Game theory ; Games ; Multi-agent systems ; multiagent systems ; Nash equilibrium ; Navigation ; pursuit-evasion game (PEG) ; safe targeted navigation</subject><ispartof>IEEE transactions on artificial intelligence, 2024-12, Vol.5 (12), p.6210-6224</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c620-abb7078caec9a47a80c419d9be2b1defff5d68a96360dd0fe721f2b18909b1693</cites><orcidid>0000-0003-2888-5210 ; 0000-0002-2889-7222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10439240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10439240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Jiaping</creatorcontrib><creatorcontrib>Feroskhan, Mir</creatorcontrib><title>Learning Multipursuit Evasion for Safe Targeted Navigation of Drones</title><title>IEEE transactions on artificial intelligence</title><addtitle>TAI</addtitle><description>Safe navigation of drones in the presence of adversarial physical attacks from multiple pursuers is a challenging task. This article proposes a novel approach, asynchronous multistage deep reinforcement learning (AMS-DRL), to train adversarial neural networks that can learn from the actions of multiple evolved pursuers and adapt quickly to their behavior, enabling the drone to avoid attacks and reach its target. Specifically, AMS-DRL evolves adversarial agents in a pursuit-evasion game (PEG) where the pursuers and the evader are asynchronously trained in a bipartite graph way during multiple stages. Our approach guarantees convergence by ensuring Nash equilibrium (NE) among agents from the game-theory analysis. We evaluate our method in extensive simulations and show that it outperforms baselines with higher navigation success rates (SRs). We also analyze how parameters such as the relative maximum speed affect navigation performance. Furthermore, we have conducted physical experiments and validated the effectiveness of the trained policies in real-time flights. A SR heatmap is introduced to elucidate how spatial geometry influences navigation outcomes.</description><subject>Collision avoidance</subject><subject>Deep reinforcement learning</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Drones</subject><subject>Game theory</subject><subject>Games</subject><subject>Multi-agent systems</subject><subject>multiagent systems</subject><subject>Nash equilibrium</subject><subject>Navigation</subject><subject>pursuit-evasion game (PEG)</subject><subject>safe targeted navigation</subject><issn>2691-4581</issn><issn>2691-4581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1ugzAUha2qlRql2Tt08AtArw0YPEZJ2kSi7VB2dIFr5CqFyIZIffuCkiHTOdL5GT7GngWEQoB-LdaHUIKMwyhSKkvFHVtIpUUQJ5m4v_GPbOX9DwDIREgp0wXb5oSus13LP8bjYE-j86Md-O6M3vYdN73j32iIF-haGqjhn3i2LQ5z2Bu-dX1H_ok9GDx6Wl11yYq3XbHZB_nX-2GzzoNaSQiwqlJIsxqp1hinmEEdC93oimQlGjLGJI3KUKtIQdOAoVQKM0WZBl0JpaMlg8tt7XrvHZny5Owvur9SQDlzKCcO5cyhvHKYJi-XiSWim3ocaRlD9A9kfVm5</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Xiao, Jiaping</creator><creator>Feroskhan, Mir</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2888-5210</orcidid><orcidid>https://orcid.org/0000-0002-2889-7222</orcidid></search><sort><creationdate>202412</creationdate><title>Learning Multipursuit Evasion for Safe Targeted Navigation of Drones</title><author>Xiao, Jiaping ; Feroskhan, Mir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620-abb7078caec9a47a80c419d9be2b1defff5d68a96360dd0fe721f2b18909b1693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collision avoidance</topic><topic>Deep reinforcement learning</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Drones</topic><topic>Game theory</topic><topic>Games</topic><topic>Multi-agent systems</topic><topic>multiagent systems</topic><topic>Nash equilibrium</topic><topic>Navigation</topic><topic>pursuit-evasion game (PEG)</topic><topic>safe targeted navigation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jiaping</creatorcontrib><creatorcontrib>Feroskhan, Mir</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Jiaping</au><au>Feroskhan, Mir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Multipursuit Evasion for Safe Targeted Navigation of Drones</atitle><jtitle>IEEE transactions on artificial intelligence</jtitle><stitle>TAI</stitle><date>2024-12</date><risdate>2024</risdate><volume>5</volume><issue>12</issue><spage>6210</spage><epage>6224</epage><pages>6210-6224</pages><issn>2691-4581</issn><eissn>2691-4581</eissn><coden>ITAICB</coden><abstract>Safe navigation of drones in the presence of adversarial physical attacks from multiple pursuers is a challenging task. This article proposes a novel approach, asynchronous multistage deep reinforcement learning (AMS-DRL), to train adversarial neural networks that can learn from the actions of multiple evolved pursuers and adapt quickly to their behavior, enabling the drone to avoid attacks and reach its target. Specifically, AMS-DRL evolves adversarial agents in a pursuit-evasion game (PEG) where the pursuers and the evader are asynchronously trained in a bipartite graph way during multiple stages. Our approach guarantees convergence by ensuring Nash equilibrium (NE) among agents from the game-theory analysis. We evaluate our method in extensive simulations and show that it outperforms baselines with higher navigation success rates (SRs). We also analyze how parameters such as the relative maximum speed affect navigation performance. Furthermore, we have conducted physical experiments and validated the effectiveness of the trained policies in real-time flights. A SR heatmap is introduced to elucidate how spatial geometry influences navigation outcomes.</abstract><pub>IEEE</pub><doi>10.1109/TAI.2024.3366871</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2888-5210</orcidid><orcidid>https://orcid.org/0000-0002-2889-7222</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2691-4581
ispartof IEEE transactions on artificial intelligence, 2024-12, Vol.5 (12), p.6210-6224
issn 2691-4581
2691-4581
language eng
recordid cdi_ieee_primary_10439240
source IEEE Electronic Library (IEL)
subjects Collision avoidance
Deep reinforcement learning
Deep reinforcement learning (DRL)
Drones
Game theory
Games
Multi-agent systems
multiagent systems
Nash equilibrium
Navigation
pursuit-evasion game (PEG)
safe targeted navigation
title Learning Multipursuit Evasion for Safe Targeted Navigation of Drones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Multipursuit%20Evasion%20for%20Safe%20Targeted%20Navigation%20of%20Drones&rft.jtitle=IEEE%20transactions%20on%20artificial%20intelligence&rft.au=Xiao,%20Jiaping&rft.date=2024-12&rft.volume=5&rft.issue=12&rft.spage=6210&rft.epage=6224&rft.pages=6210-6224&rft.issn=2691-4581&rft.eissn=2691-4581&rft.coden=ITAICB&rft_id=info:doi/10.1109/TAI.2024.3366871&rft_dat=%3Ccrossref_RIE%3E10_1109_TAI_2024_3366871%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10439240&rfr_iscdi=true