MITNet: GAN Enhanced Magnetic Induction Tomography Based on Complex CNN

Magnetic induction tomography (MIT) is an efficient solution for long-term brain disease monitoring. It focuses on reconstructing the brain's bio-impedance distribution through nonintrusive electromagnetic fields. However, high-quality reconstruction of brain images remains a significant challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-10, Vol.24 (20), p.33573-33584
Hauptverfasser: Chen, Zuohui, Chen, Cheng, Shao, Chongyang, Cai, Chang, Song, Xujie, Xiang, Yun, Liu, Ruigang, Xuan, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33584
container_issue 20
container_start_page 33573
container_title IEEE sensors journal
container_volume 24
creator Chen, Zuohui
Chen, Cheng
Shao, Chongyang
Cai, Chang
Song, Xujie
Chen, Cheng
Xiang, Yun
Liu, Ruigang
Xuan, Qi
description Magnetic induction tomography (MIT) is an efficient solution for long-term brain disease monitoring. It focuses on reconstructing the brain's bio-impedance distribution through nonintrusive electromagnetic fields. However, high-quality reconstruction of brain images remains a significant challenge, as reconstructing images from weak and noisy signals is a highly nonlinear and ill-conditioned problem. In this work, we propose a generative adversarial network (GAN) enhanced MIT technique, named MITNet, based on a complex convolutional neural network (CNN). MITNet takes complex-valued signals as input and outputs a discretized conductivity distribution map. Our approach leverages the power of GANs to eliminate artifacts and enhance the reconstruction of object shapes. The experimental results on the real-world dataset validate the performance of our technique. The F1 score of MITNet surpasses the state-of-the-art stacked auto-encoder (SAE) method by 5.33% on the agar data.
doi_str_mv 10.1109/JSEN.2024.3350742
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10439020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10439020</ieee_id><sourcerecordid>10_1109_JSEN_2024_3350742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-2cc81028074b40c2fa013c0037ef8ac17fdcad8a18de7e6562562afa6e170f5c3</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsFZ_gOBh_0DizG6S3XqrIY2VNh6M4C2sm9k20iYliWD_vQntQRiYYXjv8fgYu0fwEWH2-PqeZL4AEfhShqACccEmGIbaQxXoy_GW4AVSfV6zm677BsCZCtWEpetlnlH_xNN5xpN6a2pLJV-bTU19ZfmyLn9sXzU1z5t9s2nNYXvkz6YbNMMvbvaHHf3yOMtu2ZUzu47uznvKPhZJHr94q7d0Gc9XnhUR9p6wViMIPTT8CsAKZwClBZCKnDYWlSutKbVBXZKiKIzEMMaZiFCBC62cMjzl2rbpupZccWirvWmPBUIxkihGEsVIojiTGDwPJ09FRP_0gZyBAPkHQadZJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MITNet: GAN Enhanced Magnetic Induction Tomography Based on Complex CNN</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Zuohui ; Chen, Cheng ; Shao, Chongyang ; Cai, Chang ; Song, Xujie ; Chen, Cheng ; Xiang, Yun ; Liu, Ruigang ; Xuan, Qi</creator><creatorcontrib>Chen, Zuohui ; Chen, Cheng ; Shao, Chongyang ; Cai, Chang ; Song, Xujie ; Chen, Cheng ; Xiang, Yun ; Liu, Ruigang ; Xuan, Qi</creatorcontrib><description>Magnetic induction tomography (MIT) is an efficient solution for long-term brain disease monitoring. It focuses on reconstructing the brain's bio-impedance distribution through nonintrusive electromagnetic fields. However, high-quality reconstruction of brain images remains a significant challenge, as reconstructing images from weak and noisy signals is a highly nonlinear and ill-conditioned problem. In this work, we propose a generative adversarial network (GAN) enhanced MIT technique, named MITNet, based on a complex convolutional neural network (CNN). MITNet takes complex-valued signals as input and outputs a discretized conductivity distribution map. Our approach leverages the power of GANs to eliminate artifacts and enhance the reconstruction of object shapes. The experimental results on the real-world dataset validate the performance of our technique. The F1 score of MITNet surpasses the state-of-the-art stacked auto-encoder (SAE) method by 5.33% on the agar data.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3350742</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conductivity ; Deep neural network (DNN) ; Diseases ; electromagnetic inversion ; electromagnetic tomography ; Generative adversarial networks ; generative adversarial networks (GANs) ; Image reconstruction ; magnetic induction tomography (MIT) ; Magnetic resonance imaging ; Mathematical models ; Tomography</subject><ispartof>IEEE sensors journal, 2024-10, Vol.24 (20), p.33573-33584</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-2cc81028074b40c2fa013c0037ef8ac17fdcad8a18de7e6562562afa6e170f5c3</cites><orcidid>0000-0003-1163-698X ; 0009-0009-1549-5310 ; 0000-0003-1806-6676 ; 0000-0002-6525-4293 ; 0000-0002-1042-470X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10439020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10439020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Zuohui</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Shao, Chongyang</creatorcontrib><creatorcontrib>Cai, Chang</creatorcontrib><creatorcontrib>Song, Xujie</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Xiang, Yun</creatorcontrib><creatorcontrib>Liu, Ruigang</creatorcontrib><creatorcontrib>Xuan, Qi</creatorcontrib><title>MITNet: GAN Enhanced Magnetic Induction Tomography Based on Complex CNN</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Magnetic induction tomography (MIT) is an efficient solution for long-term brain disease monitoring. It focuses on reconstructing the brain's bio-impedance distribution through nonintrusive electromagnetic fields. However, high-quality reconstruction of brain images remains a significant challenge, as reconstructing images from weak and noisy signals is a highly nonlinear and ill-conditioned problem. In this work, we propose a generative adversarial network (GAN) enhanced MIT technique, named MITNet, based on a complex convolutional neural network (CNN). MITNet takes complex-valued signals as input and outputs a discretized conductivity distribution map. Our approach leverages the power of GANs to eliminate artifacts and enhance the reconstruction of object shapes. The experimental results on the real-world dataset validate the performance of our technique. The F1 score of MITNet surpasses the state-of-the-art stacked auto-encoder (SAE) method by 5.33% on the agar data.</description><subject>Conductivity</subject><subject>Deep neural network (DNN)</subject><subject>Diseases</subject><subject>electromagnetic inversion</subject><subject>electromagnetic tomography</subject><subject>Generative adversarial networks</subject><subject>generative adversarial networks (GANs)</subject><subject>Image reconstruction</subject><subject>magnetic induction tomography (MIT)</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Tomography</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQhRdRsFZ_gOBh_0DizG6S3XqrIY2VNh6M4C2sm9k20iYliWD_vQntQRiYYXjv8fgYu0fwEWH2-PqeZL4AEfhShqACccEmGIbaQxXoy_GW4AVSfV6zm677BsCZCtWEpetlnlH_xNN5xpN6a2pLJV-bTU19ZfmyLn9sXzU1z5t9s2nNYXvkz6YbNMMvbvaHHf3yOMtu2ZUzu47uznvKPhZJHr94q7d0Gc9XnhUR9p6wViMIPTT8CsAKZwClBZCKnDYWlSutKbVBXZKiKIzEMMaZiFCBC62cMjzl2rbpupZccWirvWmPBUIxkihGEsVIojiTGDwPJ09FRP_0gZyBAPkHQadZJg</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Chen, Zuohui</creator><creator>Chen, Cheng</creator><creator>Shao, Chongyang</creator><creator>Cai, Chang</creator><creator>Song, Xujie</creator><creator>Chen, Cheng</creator><creator>Xiang, Yun</creator><creator>Liu, Ruigang</creator><creator>Xuan, Qi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1163-698X</orcidid><orcidid>https://orcid.org/0009-0009-1549-5310</orcidid><orcidid>https://orcid.org/0000-0003-1806-6676</orcidid><orcidid>https://orcid.org/0000-0002-6525-4293</orcidid><orcidid>https://orcid.org/0000-0002-1042-470X</orcidid></search><sort><creationdate>20241015</creationdate><title>MITNet: GAN Enhanced Magnetic Induction Tomography Based on Complex CNN</title><author>Chen, Zuohui ; Chen, Cheng ; Shao, Chongyang ; Cai, Chang ; Song, Xujie ; Chen, Cheng ; Xiang, Yun ; Liu, Ruigang ; Xuan, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-2cc81028074b40c2fa013c0037ef8ac17fdcad8a18de7e6562562afa6e170f5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conductivity</topic><topic>Deep neural network (DNN)</topic><topic>Diseases</topic><topic>electromagnetic inversion</topic><topic>electromagnetic tomography</topic><topic>Generative adversarial networks</topic><topic>generative adversarial networks (GANs)</topic><topic>Image reconstruction</topic><topic>magnetic induction tomography (MIT)</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zuohui</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Shao, Chongyang</creatorcontrib><creatorcontrib>Cai, Chang</creatorcontrib><creatorcontrib>Song, Xujie</creatorcontrib><creatorcontrib>Chen, Cheng</creatorcontrib><creatorcontrib>Xiang, Yun</creatorcontrib><creatorcontrib>Liu, Ruigang</creatorcontrib><creatorcontrib>Xuan, Qi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Zuohui</au><au>Chen, Cheng</au><au>Shao, Chongyang</au><au>Cai, Chang</au><au>Song, Xujie</au><au>Chen, Cheng</au><au>Xiang, Yun</au><au>Liu, Ruigang</au><au>Xuan, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MITNet: GAN Enhanced Magnetic Induction Tomography Based on Complex CNN</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-10-15</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>33573</spage><epage>33584</epage><pages>33573-33584</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Magnetic induction tomography (MIT) is an efficient solution for long-term brain disease monitoring. It focuses on reconstructing the brain's bio-impedance distribution through nonintrusive electromagnetic fields. However, high-quality reconstruction of brain images remains a significant challenge, as reconstructing images from weak and noisy signals is a highly nonlinear and ill-conditioned problem. In this work, we propose a generative adversarial network (GAN) enhanced MIT technique, named MITNet, based on a complex convolutional neural network (CNN). MITNet takes complex-valued signals as input and outputs a discretized conductivity distribution map. Our approach leverages the power of GANs to eliminate artifacts and enhance the reconstruction of object shapes. The experimental results on the real-world dataset validate the performance of our technique. The F1 score of MITNet surpasses the state-of-the-art stacked auto-encoder (SAE) method by 5.33% on the agar data.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3350742</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1163-698X</orcidid><orcidid>https://orcid.org/0009-0009-1549-5310</orcidid><orcidid>https://orcid.org/0000-0003-1806-6676</orcidid><orcidid>https://orcid.org/0000-0002-6525-4293</orcidid><orcidid>https://orcid.org/0000-0002-1042-470X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-10, Vol.24 (20), p.33573-33584
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10439020
source IEEE Electronic Library (IEL)
subjects Conductivity
Deep neural network (DNN)
Diseases
electromagnetic inversion
electromagnetic tomography
Generative adversarial networks
generative adversarial networks (GANs)
Image reconstruction
magnetic induction tomography (MIT)
Magnetic resonance imaging
Mathematical models
Tomography
title MITNet: GAN Enhanced Magnetic Induction Tomography Based on Complex CNN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MITNet:%20GAN%20Enhanced%20Magnetic%20Induction%20Tomography%20Based%20on%20Complex%20CNN&rft.jtitle=IEEE%20sensors%20journal&rft.au=Chen,%20Zuohui&rft.date=2024-10-15&rft.volume=24&rft.issue=20&rft.spage=33573&rft.epage=33584&rft.pages=33573-33584&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3350742&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3350742%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10439020&rfr_iscdi=true