Trading Off Scalability, Privacy, and Performance in Data Synthesis
Synthetic data has been widely applied in the real world recently. One typical example is the creation of synthetic data for privacy concerned datasets. In this scenario, synthetic data substitute the real data which contains the privacy information, and is used to public testing for machine learnin...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.26642-26654 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26654 |
---|---|
container_issue | |
container_start_page | 26642 |
container_title | IEEE access |
container_volume | 12 |
creator | Ling, Xiao Menzies, Tim Hazard, Christopher Shu, Jack Beel, Jacob |
description | Synthetic data has been widely applied in the real world recently. One typical example is the creation of synthetic data for privacy concerned datasets. In this scenario, synthetic data substitute the real data which contains the privacy information, and is used to public testing for machine learning models. Another typical example is the unbalance data over-sampling which the synthetic data is generated in the region of minority samples to balance the positive and negative ratio when training the machine learning models. In this study, we concentrate on the first example, and introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework. We evaluate these two algorithms on the aspects of privacy preservation and accuracy, and compare them to the two state-of-the-art synthetic data generation algorithms DataSynthesizer and Synthetic Data Vault. We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results in the best overall score. On the other hand, our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability. |
doi_str_mv | 10.1109/ACCESS.2024.3366556 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10438420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10438420</ieee_id><doaj_id>oai_doaj_org_article_7cc6917baf9b47ff96051e88100d1ae9</doaj_id><sourcerecordid>2930957791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-e4f9599c7ae9932ff3aab05bf699887dd6c660270b688f0903305a02025c8d3a3</originalsourceid><addsrcrecordid>eNpNkE1rwzAMhsPYYKXrL9gOgV3XTo5jxz6WrPuAQgvpzkZx7M6lTTonHfTfz13KqC4SQu8r6YmiewITQkA-T_N8VhSTBJJ0QinnjPGraJAQLseUUX59Ud9Go7bdQAgRWiwbRPnKY-XqdbywNi40brF0W9cdn-Kldz-oQ4F1FS-Nt43fYa1N7Or4BTuMi2PdfZnWtXfRjcVta0bnPIw-X2er_H08X7x95NP5WFMmu7FJrWRS6gyNlDSxliKWwErLpRQiqyquOYckg5ILYUECpcAQwl9Mi4oiHUYfvW_V4EbtvduhP6oGnfprNH6t0HdOb43KtOaSZCVaWaaZtZIDI0YIAlCRsD94PfZee998H0zbqU1z8HU4XyWSQmCTSRKmaD-lfdO23tj_rQTUCb7q4asTfHWGH1QPvcoZYy4UKRVpAvQXw5h-Cw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930957791</pqid></control><display><type>article</type><title>Trading Off Scalability, Privacy, and Performance in Data Synthesis</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Ling, Xiao ; Menzies, Tim ; Hazard, Christopher ; Shu, Jack ; Beel, Jacob</creator><creatorcontrib>Ling, Xiao ; Menzies, Tim ; Hazard, Christopher ; Shu, Jack ; Beel, Jacob</creatorcontrib><description>Synthetic data has been widely applied in the real world recently. One typical example is the creation of synthetic data for privacy concerned datasets. In this scenario, synthetic data substitute the real data which contains the privacy information, and is used to public testing for machine learning models. Another typical example is the unbalance data over-sampling which the synthetic data is generated in the region of minority samples to balance the positive and negative ratio when training the machine learning models. In this study, we concentrate on the first example, and introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework. We evaluate these two algorithms on the aspects of privacy preservation and accuracy, and compare them to the two state-of-the-art synthetic data generation algorithms DataSynthesizer and Synthetic Data Vault. We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results in the best overall score. On the other hand, our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3366556</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Biomedical imaging ; classification ; Classification algorithms ; Clustering algorithms ; Data models ; Data privacy ; Engines ; Generative adversarial networks ; Homomorphic encryption ; Machine learning ; Privacy ; privacy preservation ; regression ; Regression analysis ; Scalability ; Synthetic data ; Synthetic data generation</subject><ispartof>IEEE access, 2024, Vol.12, p.26642-26654</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-e4f9599c7ae9932ff3aab05bf699887dd6c660270b688f0903305a02025c8d3a3</cites><orcidid>0000-0002-5040-3196 ; 0000-0002-1398-9319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10438420$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ling, Xiao</creatorcontrib><creatorcontrib>Menzies, Tim</creatorcontrib><creatorcontrib>Hazard, Christopher</creatorcontrib><creatorcontrib>Shu, Jack</creatorcontrib><creatorcontrib>Beel, Jacob</creatorcontrib><title>Trading Off Scalability, Privacy, and Performance in Data Synthesis</title><title>IEEE access</title><addtitle>Access</addtitle><description>Synthetic data has been widely applied in the real world recently. One typical example is the creation of synthetic data for privacy concerned datasets. In this scenario, synthetic data substitute the real data which contains the privacy information, and is used to public testing for machine learning models. Another typical example is the unbalance data over-sampling which the synthetic data is generated in the region of minority samples to balance the positive and negative ratio when training the machine learning models. In this study, we concentrate on the first example, and introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework. We evaluate these two algorithms on the aspects of privacy preservation and accuracy, and compare them to the two state-of-the-art synthetic data generation algorithms DataSynthesizer and Synthetic Data Vault. We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results in the best overall score. On the other hand, our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Biomedical imaging</subject><subject>classification</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Engines</subject><subject>Generative adversarial networks</subject><subject>Homomorphic encryption</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>regression</subject><subject>Regression analysis</subject><subject>Scalability</subject><subject>Synthetic data</subject><subject>Synthetic data generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE1rwzAMhsPYYKXrL9gOgV3XTo5jxz6WrPuAQgvpzkZx7M6lTTonHfTfz13KqC4SQu8r6YmiewITQkA-T_N8VhSTBJJ0QinnjPGraJAQLseUUX59Ud9Go7bdQAgRWiwbRPnKY-XqdbywNi40brF0W9cdn-Kldz-oQ4F1FS-Nt43fYa1N7Or4BTuMi2PdfZnWtXfRjcVta0bnPIw-X2er_H08X7x95NP5WFMmu7FJrWRS6gyNlDSxliKWwErLpRQiqyquOYckg5ILYUECpcAQwl9Mi4oiHUYfvW_V4EbtvduhP6oGnfprNH6t0HdOb43KtOaSZCVaWaaZtZIDI0YIAlCRsD94PfZee998H0zbqU1z8HU4XyWSQmCTSRKmaD-lfdO23tj_rQTUCb7q4asTfHWGH1QPvcoZYy4UKRVpAvQXw5h-Cw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ling, Xiao</creator><creator>Menzies, Tim</creator><creator>Hazard, Christopher</creator><creator>Shu, Jack</creator><creator>Beel, Jacob</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5040-3196</orcidid><orcidid>https://orcid.org/0000-0002-1398-9319</orcidid></search><sort><creationdate>2024</creationdate><title>Trading Off Scalability, Privacy, and Performance in Data Synthesis</title><author>Ling, Xiao ; Menzies, Tim ; Hazard, Christopher ; Shu, Jack ; Beel, Jacob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-e4f9599c7ae9932ff3aab05bf699887dd6c660270b688f0903305a02025c8d3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Biomedical imaging</topic><topic>classification</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Engines</topic><topic>Generative adversarial networks</topic><topic>Homomorphic encryption</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>regression</topic><topic>Regression analysis</topic><topic>Scalability</topic><topic>Synthetic data</topic><topic>Synthetic data generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Xiao</creatorcontrib><creatorcontrib>Menzies, Tim</creatorcontrib><creatorcontrib>Hazard, Christopher</creatorcontrib><creatorcontrib>Shu, Jack</creatorcontrib><creatorcontrib>Beel, Jacob</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Xiao</au><au>Menzies, Tim</au><au>Hazard, Christopher</au><au>Shu, Jack</au><au>Beel, Jacob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trading Off Scalability, Privacy, and Performance in Data Synthesis</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>26642</spage><epage>26654</epage><pages>26642-26654</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Synthetic data has been widely applied in the real world recently. One typical example is the creation of synthetic data for privacy concerned datasets. In this scenario, synthetic data substitute the real data which contains the privacy information, and is used to public testing for machine learning models. Another typical example is the unbalance data over-sampling which the synthetic data is generated in the region of minority samples to balance the positive and negative ratio when training the machine learning models. In this study, we concentrate on the first example, and introduce (a) the Howso engine, and (b) our proposed random projection based synthetic data generation framework. We evaluate these two algorithms on the aspects of privacy preservation and accuracy, and compare them to the two state-of-the-art synthetic data generation algorithms DataSynthesizer and Synthetic Data Vault. We show that the synthetic data generated by Howso engine has good privacy and accuracy, which results in the best overall score. On the other hand, our proposed random projection based framework can generate synthetic data with highest accuracy score, and has the fastest scalability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3366556</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5040-3196</orcidid><orcidid>https://orcid.org/0000-0002-1398-9319</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.26642-26654 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10438420 |
source | Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Accuracy Algorithms Biomedical imaging classification Classification algorithms Clustering algorithms Data models Data privacy Engines Generative adversarial networks Homomorphic encryption Machine learning Privacy privacy preservation regression Regression analysis Scalability Synthetic data Synthetic data generation |
title | Trading Off Scalability, Privacy, and Performance in Data Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trading%20Off%20Scalability,%20Privacy,%20and%20Performance%20in%20Data%20Synthesis&rft.jtitle=IEEE%20access&rft.au=Ling,%20Xiao&rft.date=2024&rft.volume=12&rft.spage=26642&rft.epage=26654&rft.pages=26642-26654&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3366556&rft_dat=%3Cproquest_ieee_%3E2930957791%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930957791&rft_id=info:pmid/&rft_ieee_id=10438420&rft_doaj_id=oai_doaj_org_article_7cc6917baf9b47ff96051e88100d1ae9&rfr_iscdi=true |