Virtual Synchronous Machine Control for Doubly Fed Induction Machine-Based Wind Energy Conversion Systems
Renewable inverter-based resources (IBRs), such as wind energy conversion systems (WSs), replace directly grid-connected synchronous machines (SMs). Standard grid-following (GFL) control of IBRs decreases the power system inertia. This article proposes virtual synchronous machine (VSM)-based grid-fo...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of the Industrial Electronics Society 2024, Vol.5, p.264-301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | |
container_start_page | 264 |
container_title | IEEE open journal of the Industrial Electronics Society |
container_volume | 5 |
creator | THOMMESSEN, ANDRE Hackl, Christoph Michael |
description | Renewable inverter-based resources (IBRs), such as wind energy conversion systems (WSs), replace directly grid-connected synchronous machines (SMs). Standard grid-following (GFL) control of IBRs decreases the power system inertia. This article proposes virtual synchronous machine (VSM)-based grid-forming (GFM) control for doubly fed induction machine (DFIM)-based WSs with the following extensions: feedforward torque control (FTC) for maximum power point tracking (MPPT), MPPT compensation for accurate inertia emulation, reference power point tracking to provide energy reserves, dynamic droop saturation control to mitigate power overloading, and grid voltage control utilizing DFIM stator and rotor-side back-to-back inverter reactive power. The WSs are integrated into the IEEE 9-bus test system. Comprehensive simulation results give insights into (V)SM-based power system dynamics. Compared with existing VSM control without FTC, the proposed FTC increases the wind energy yield, i.e., typical MPPT performance is achieved, similar to GFL control. For high power penetration of IBRs, the proposed VSM control enables stable operation due to its GFM capability, whereas GFL control tends to instability. The VSM provides higher power system damping than a real SM due to adaptable internal damping. If wind power reserves are available, the fast VSM droop control provides additional damping by adapting the virtual turbine power without the dominant delays of real turbine dynamics. |
doi_str_mv | 10.1109/OJIES.2024.3366082 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10436334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10436334</ieee_id><doaj_id>oai_doaj_org_article_521491b5e67d4b1aa479db8508d4d1cb</doaj_id><sourcerecordid>3040055551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-8326954bcf0eb5b7031667a8b3fda030e4a562ddf200daec97a163b70951fef13</originalsourceid><addsrcrecordid>eNpNUclO3EAQtSIiBQE_EOVgKWdPqlfbxzAMySAiDpPl2OqlDD0y3dBtI_nvYzOAqEuVnt5S0iuKzwRWhED77eZqu9mtKFC-YkxKaOiH4phKzitCG3707v5UnOW8BwAqCCFMHhf-r0_DqPtyNwV7l2KIYy5_aXvnA5brGIYU-7KLqbyIo-mn8hJduQ1utIOP4ZVYnes84_98cOUmYLqdFukTpryQdlMe8D6fFh873Wc8e9knxZ_Lze_1z-r65sd2_f26shzkUDWMylZwYztAI0wNjEhZ68awzmlggFwLSZ3rKIDTaNtaE8lmXitIhx1hJ8X24Oui3quH5O91mlTUXj0DMd0qnQZve1SCEt4SI1DWjhuiNa9bZxoBjeOOWDN7fT14PaT4OGIe1D6OKczvKwYcQMyzJNIDy6aYc8LuLZWAWhpSzw2ppSH10tAs-nIQeUR8J-BMMsbZf1n_jK0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040055551</pqid></control><display><type>article</type><title>Virtual Synchronous Machine Control for Doubly Fed Induction Machine-Based Wind Energy Conversion Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>THOMMESSEN, ANDRE ; Hackl, Christoph Michael</creator><creatorcontrib>THOMMESSEN, ANDRE ; Hackl, Christoph Michael</creatorcontrib><description>Renewable inverter-based resources (IBRs), such as wind energy conversion systems (WSs), replace directly grid-connected synchronous machines (SMs). Standard grid-following (GFL) control of IBRs decreases the power system inertia. This article proposes virtual synchronous machine (VSM)-based grid-forming (GFM) control for doubly fed induction machine (DFIM)-based WSs with the following extensions: feedforward torque control (FTC) for maximum power point tracking (MPPT), MPPT compensation for accurate inertia emulation, reference power point tracking to provide energy reserves, dynamic droop saturation control to mitigate power overloading, and grid voltage control utilizing DFIM stator and rotor-side back-to-back inverter reactive power. The WSs are integrated into the IEEE 9-bus test system. Comprehensive simulation results give insights into (V)SM-based power system dynamics. Compared with existing VSM control without FTC, the proposed FTC increases the wind energy yield, i.e., typical MPPT performance is achieved, similar to GFL control. For high power penetration of IBRs, the proposed VSM control enables stable operation due to its GFM capability, whereas GFL control tends to instability. The VSM provides higher power system damping than a real SM due to adaptable internal damping. If wind power reserves are available, the fast VSM droop control provides additional damping by adapting the virtual turbine power without the dominant delays of real turbine dynamics.</description><identifier>ISSN: 2644-1284</identifier><identifier>EISSN: 2644-1284</identifier><identifier>DOI: 10.1109/OJIES.2024.3366082</identifier><identifier>CODEN: IOJIAJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Damping ; Doubly fed induction generators ; Doubly fed induction machine (DFIM) ; Energy conversion ; Feedforward control ; Grid forming ; grid-following (GFL) ; grid-forming (GFM) ; Induction motors ; Inertia ; Inverters ; Maximum power point trackers ; Maximum power tracking ; power system dynamics ; Power system stability ; Reactive power ; Reserves ; Rotors ; Stators ; synchronization stability ; Synchronous machines ; System dynamics ; virtual synchronous machine (VSM) ; Wind energy ; Wind power ; Wind turbines</subject><ispartof>IEEE open journal of the Industrial Electronics Society, 2024, Vol.5, p.264-301</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-8326954bcf0eb5b7031667a8b3fda030e4a562ddf200daec97a163b70951fef13</citedby><cites>FETCH-LOGICAL-c406t-8326954bcf0eb5b7031667a8b3fda030e4a562ddf200daec97a163b70951fef13</cites><orcidid>0000-0001-5300-7124 ; 0000-0001-5829-6818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10436334$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>THOMMESSEN, ANDRE</creatorcontrib><creatorcontrib>Hackl, Christoph Michael</creatorcontrib><title>Virtual Synchronous Machine Control for Doubly Fed Induction Machine-Based Wind Energy Conversion Systems</title><title>IEEE open journal of the Industrial Electronics Society</title><addtitle>OJIES</addtitle><description>Renewable inverter-based resources (IBRs), such as wind energy conversion systems (WSs), replace directly grid-connected synchronous machines (SMs). Standard grid-following (GFL) control of IBRs decreases the power system inertia. This article proposes virtual synchronous machine (VSM)-based grid-forming (GFM) control for doubly fed induction machine (DFIM)-based WSs with the following extensions: feedforward torque control (FTC) for maximum power point tracking (MPPT), MPPT compensation for accurate inertia emulation, reference power point tracking to provide energy reserves, dynamic droop saturation control to mitigate power overloading, and grid voltage control utilizing DFIM stator and rotor-side back-to-back inverter reactive power. The WSs are integrated into the IEEE 9-bus test system. Comprehensive simulation results give insights into (V)SM-based power system dynamics. Compared with existing VSM control without FTC, the proposed FTC increases the wind energy yield, i.e., typical MPPT performance is achieved, similar to GFL control. For high power penetration of IBRs, the proposed VSM control enables stable operation due to its GFM capability, whereas GFL control tends to instability. The VSM provides higher power system damping than a real SM due to adaptable internal damping. If wind power reserves are available, the fast VSM droop control provides additional damping by adapting the virtual turbine power without the dominant delays of real turbine dynamics.</description><subject>Control systems</subject><subject>Damping</subject><subject>Doubly fed induction generators</subject><subject>Doubly fed induction machine (DFIM)</subject><subject>Energy conversion</subject><subject>Feedforward control</subject><subject>Grid forming</subject><subject>grid-following (GFL)</subject><subject>grid-forming (GFM)</subject><subject>Induction motors</subject><subject>Inertia</subject><subject>Inverters</subject><subject>Maximum power point trackers</subject><subject>Maximum power tracking</subject><subject>power system dynamics</subject><subject>Power system stability</subject><subject>Reactive power</subject><subject>Reserves</subject><subject>Rotors</subject><subject>Stators</subject><subject>synchronization stability</subject><subject>Synchronous machines</subject><subject>System dynamics</subject><subject>virtual synchronous machine (VSM)</subject><subject>Wind energy</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>2644-1284</issn><issn>2644-1284</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclO3EAQtSIiBQE_EOVgKWdPqlfbxzAMySAiDpPl2OqlDD0y3dBtI_nvYzOAqEuVnt5S0iuKzwRWhED77eZqu9mtKFC-YkxKaOiH4phKzitCG3707v5UnOW8BwAqCCFMHhf-r0_DqPtyNwV7l2KIYy5_aXvnA5brGIYU-7KLqbyIo-mn8hJduQ1utIOP4ZVYnes84_98cOUmYLqdFukTpryQdlMe8D6fFh873Wc8e9knxZ_Lze_1z-r65sd2_f26shzkUDWMylZwYztAI0wNjEhZ68awzmlggFwLSZ3rKIDTaNtaE8lmXitIhx1hJ8X24Oui3quH5O91mlTUXj0DMd0qnQZve1SCEt4SI1DWjhuiNa9bZxoBjeOOWDN7fT14PaT4OGIe1D6OKczvKwYcQMyzJNIDy6aYc8LuLZWAWhpSzw2ppSH10tAs-nIQeUR8J-BMMsbZf1n_jK0</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>THOMMESSEN, ANDRE</creator><creator>Hackl, Christoph Michael</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5300-7124</orcidid><orcidid>https://orcid.org/0000-0001-5829-6818</orcidid></search><sort><creationdate>2024</creationdate><title>Virtual Synchronous Machine Control for Doubly Fed Induction Machine-Based Wind Energy Conversion Systems</title><author>THOMMESSEN, ANDRE ; Hackl, Christoph Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-8326954bcf0eb5b7031667a8b3fda030e4a562ddf200daec97a163b70951fef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>Damping</topic><topic>Doubly fed induction generators</topic><topic>Doubly fed induction machine (DFIM)</topic><topic>Energy conversion</topic><topic>Feedforward control</topic><topic>Grid forming</topic><topic>grid-following (GFL)</topic><topic>grid-forming (GFM)</topic><topic>Induction motors</topic><topic>Inertia</topic><topic>Inverters</topic><topic>Maximum power point trackers</topic><topic>Maximum power tracking</topic><topic>power system dynamics</topic><topic>Power system stability</topic><topic>Reactive power</topic><topic>Reserves</topic><topic>Rotors</topic><topic>Stators</topic><topic>synchronization stability</topic><topic>Synchronous machines</topic><topic>System dynamics</topic><topic>virtual synchronous machine (VSM)</topic><topic>Wind energy</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>THOMMESSEN, ANDRE</creatorcontrib><creatorcontrib>Hackl, Christoph Michael</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of the Industrial Electronics Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>THOMMESSEN, ANDRE</au><au>Hackl, Christoph Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Synchronous Machine Control for Doubly Fed Induction Machine-Based Wind Energy Conversion Systems</atitle><jtitle>IEEE open journal of the Industrial Electronics Society</jtitle><stitle>OJIES</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>264</spage><epage>301</epage><pages>264-301</pages><issn>2644-1284</issn><eissn>2644-1284</eissn><coden>IOJIAJ</coden><abstract>Renewable inverter-based resources (IBRs), such as wind energy conversion systems (WSs), replace directly grid-connected synchronous machines (SMs). Standard grid-following (GFL) control of IBRs decreases the power system inertia. This article proposes virtual synchronous machine (VSM)-based grid-forming (GFM) control for doubly fed induction machine (DFIM)-based WSs with the following extensions: feedforward torque control (FTC) for maximum power point tracking (MPPT), MPPT compensation for accurate inertia emulation, reference power point tracking to provide energy reserves, dynamic droop saturation control to mitigate power overloading, and grid voltage control utilizing DFIM stator and rotor-side back-to-back inverter reactive power. The WSs are integrated into the IEEE 9-bus test system. Comprehensive simulation results give insights into (V)SM-based power system dynamics. Compared with existing VSM control without FTC, the proposed FTC increases the wind energy yield, i.e., typical MPPT performance is achieved, similar to GFL control. For high power penetration of IBRs, the proposed VSM control enables stable operation due to its GFM capability, whereas GFL control tends to instability. The VSM provides higher power system damping than a real SM due to adaptable internal damping. If wind power reserves are available, the fast VSM droop control provides additional damping by adapting the virtual turbine power without the dominant delays of real turbine dynamics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJIES.2024.3366082</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0001-5300-7124</orcidid><orcidid>https://orcid.org/0000-0001-5829-6818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-1284 |
ispartof | IEEE open journal of the Industrial Electronics Society, 2024, Vol.5, p.264-301 |
issn | 2644-1284 2644-1284 |
language | eng |
recordid | cdi_ieee_primary_10436334 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Control systems Damping Doubly fed induction generators Doubly fed induction machine (DFIM) Energy conversion Feedforward control Grid forming grid-following (GFL) grid-forming (GFM) Induction motors Inertia Inverters Maximum power point trackers Maximum power tracking power system dynamics Power system stability Reactive power Reserves Rotors Stators synchronization stability Synchronous machines System dynamics virtual synchronous machine (VSM) Wind energy Wind power Wind turbines |
title | Virtual Synchronous Machine Control for Doubly Fed Induction Machine-Based Wind Energy Conversion Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Synchronous%20Machine%20Control%20for%20Doubly%20Fed%20Induction%20Machine-Based%20Wind%20Energy%20Conversion%20Systems&rft.jtitle=IEEE%20open%20journal%20of%20the%20Industrial%20Electronics%20Society&rft.au=THOMMESSEN,%20ANDRE&rft.date=2024&rft.volume=5&rft.spage=264&rft.epage=301&rft.pages=264-301&rft.issn=2644-1284&rft.eissn=2644-1284&rft.coden=IOJIAJ&rft_id=info:doi/10.1109/OJIES.2024.3366082&rft_dat=%3Cproquest_ieee_%3E3040055551%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040055551&rft_id=info:pmid/&rft_ieee_id=10436334&rft_doaj_id=oai_doaj_org_article_521491b5e67d4b1aa479db8508d4d1cb&rfr_iscdi=true |