Electrical Breakdown Characteristics in High-Vacuum Conditions for the Design of Superconducting Coils

In recent years, the utilization of high-temperature superconductors (HTS) in medical devices, such as magnetic resonance imaging (MRI) and particle accelerators for cancer treatment, has seen significant growth. This study focuses on the electrical insulation design of fast-ramping HTS saddle magne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-7
Hauptverfasser: Park, Junyoung, Shin, Woocheol, Jeong, Minkyung, Ku, Bonhyuk, Lee, Hobin, Park, Jeonghwan, Hahn, Garam, Choi, Seyong, Hahn, Seungyong, Kang, Hyoungku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Park, Junyoung
Shin, Woocheol
Jeong, Minkyung
Ku, Bonhyuk
Lee, Hobin
Park, Jeonghwan
Hahn, Garam
Choi, Seyong
Hahn, Seungyong
Kang, Hyoungku
description In recent years, the utilization of high-temperature superconductors (HTS) in medical devices, such as magnetic resonance imaging (MRI) and particle accelerators for cancer treatment, has seen significant growth. This study focuses on the electrical insulation design of fast-ramping HTS saddle magnets, pivotal in reducing the volume and consequent operational costs of particle accelerators. Generally, these HTS magnets are operated under high-vacuum conditions to deter external heat intrusion and optimize thermal efficiency. However, their intricate geometries can inadvertently result in areas of localized vacuum degradation, undermining their electrical insulation capabilities, especially in environments with pressures less than 0.001 Pa. Further, this research delves into the influence of vacuum degree and insulator surface roughness on the electrical breakdown properties. The focus is primarily on the distinctions between sparkover and flashover. Due to their fast-ramping nature, HTS magnets undergo substantial current changes in short durations, leading to the induction of potentially dangerous voltages that might trigger electrical breakdown at sensitive junctures. In light of these challenges, we embarked on a series of experiments to understand electrical breakdown phenomena under diverse vacuum scenarios. These experiments, supplemented with finite element method (FEM) analysis, paved the way for the derivation of empirical formula. These formulas intend to guide the design of HTS magnets, ensuring their electrical insulation remains robust across a range of vacuum conditions.
doi_str_mv 10.1109/TASC.2024.3365094
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10433695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10433695</ieee_id><sourcerecordid>2938023484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-824de785f827dad5b6a72ea80a161162959de80569c5b70552d203792abc3cff3</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EEqXwAEgMlphTfIkTeyyhUKRKDC2sluvYrUsaF9sR4u1xVQamc4bvP5cPgFuMJhgj8bCaLpsJQaScUFoxJMozMMKM8YIwzM5zjxguOCH0ElzFuEMIl7xkI2BnndEpOK06-BiM-mz9dw-brQpKJxNcTE5H6Ho4d5tt8aH0MOxh4_vWJef7CK0PMG0NfDLRbXroLVwOBxN0JgadXL_JsOviNbiwqovm5q-OwfvzbNXMi8Xby2szXRSalFXKB5atqTmznNStatm6UjUxiiOFK4wrIphoDUesEpqta8QYaQmitSBqram2lo7B_WnuIfivwcQkd34IfV4piaAcEZrfzhQ-UTr4GIOx8hDcXoUfiZE86pRHnfKoU_7pzJm7U8YZY_7xZQYEo7-LRXF6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938023484</pqid></control><display><type>article</type><title>Electrical Breakdown Characteristics in High-Vacuum Conditions for the Design of Superconducting Coils</title><source>IEEE Electronic Library (IEL)</source><creator>Park, Junyoung ; Shin, Woocheol ; Jeong, Minkyung ; Ku, Bonhyuk ; Lee, Hobin ; Park, Jeonghwan ; Hahn, Garam ; Choi, Seyong ; Hahn, Seungyong ; Kang, Hyoungku</creator><creatorcontrib>Park, Junyoung ; Shin, Woocheol ; Jeong, Minkyung ; Ku, Bonhyuk ; Lee, Hobin ; Park, Jeonghwan ; Hahn, Garam ; Choi, Seyong ; Hahn, Seungyong ; Kang, Hyoungku</creatorcontrib><description>In recent years, the utilization of high-temperature superconductors (HTS) in medical devices, such as magnetic resonance imaging (MRI) and particle accelerators for cancer treatment, has seen significant growth. This study focuses on the electrical insulation design of fast-ramping HTS saddle magnets, pivotal in reducing the volume and consequent operational costs of particle accelerators. Generally, these HTS magnets are operated under high-vacuum conditions to deter external heat intrusion and optimize thermal efficiency. However, their intricate geometries can inadvertently result in areas of localized vacuum degradation, undermining their electrical insulation capabilities, especially in environments with pressures less than 0.001 Pa. Further, this research delves into the influence of vacuum degree and insulator surface roughness on the electrical breakdown properties. The focus is primarily on the distinctions between sparkover and flashover. Due to their fast-ramping nature, HTS magnets undergo substantial current changes in short durations, leading to the induction of potentially dangerous voltages that might trigger electrical breakdown at sensitive junctures. In light of these challenges, we embarked on a series of experiments to understand electrical breakdown phenomena under diverse vacuum scenarios. These experiments, supplemented with finite element method (FEM) analysis, paved the way for the derivation of empirical formula. These formulas intend to guide the design of HTS magnets, ensuring their electrical insulation remains robust across a range of vacuum conditions.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3365094</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Electric breakdown ; Electric fields ; Electrical faults ; Electrical insulation ; Electrodes ; Electrons ; Empirical analysis ; Finite element method ; Flashover ; Flashover voltage ; High temperature superconductors ; high-vacuum condition ; insulation design ; Magnetic resonance imaging ; Magnets ; Particle accelerators ; Rough surfaces ; roughness ; Sparkover ; sparkover voltage ; Surface roughness ; Thermodynamic efficiency ; Vacuum breakdown</subject><ispartof>IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-824de785f827dad5b6a72ea80a161162959de80569c5b70552d203792abc3cff3</cites><orcidid>0000-0001-7507-5304 ; 0000-0001-8035-4279 ; 0000-0002-5421-0455 ; 0000-0002-7756-7844 ; 0000-0002-7554-610X ; 0000-0003-0777-6912 ; 0000-0002-4511-4162 ; 0000-0003-2374-139X ; 0000-0002-4230-8076 ; 0000-0001-6019-9953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10433695$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10433695$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Park, Junyoung</creatorcontrib><creatorcontrib>Shin, Woocheol</creatorcontrib><creatorcontrib>Jeong, Minkyung</creatorcontrib><creatorcontrib>Ku, Bonhyuk</creatorcontrib><creatorcontrib>Lee, Hobin</creatorcontrib><creatorcontrib>Park, Jeonghwan</creatorcontrib><creatorcontrib>Hahn, Garam</creatorcontrib><creatorcontrib>Choi, Seyong</creatorcontrib><creatorcontrib>Hahn, Seungyong</creatorcontrib><creatorcontrib>Kang, Hyoungku</creatorcontrib><title>Electrical Breakdown Characteristics in High-Vacuum Conditions for the Design of Superconducting Coils</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>In recent years, the utilization of high-temperature superconductors (HTS) in medical devices, such as magnetic resonance imaging (MRI) and particle accelerators for cancer treatment, has seen significant growth. This study focuses on the electrical insulation design of fast-ramping HTS saddle magnets, pivotal in reducing the volume and consequent operational costs of particle accelerators. Generally, these HTS magnets are operated under high-vacuum conditions to deter external heat intrusion and optimize thermal efficiency. However, their intricate geometries can inadvertently result in areas of localized vacuum degradation, undermining their electrical insulation capabilities, especially in environments with pressures less than 0.001 Pa. Further, this research delves into the influence of vacuum degree and insulator surface roughness on the electrical breakdown properties. The focus is primarily on the distinctions between sparkover and flashover. Due to their fast-ramping nature, HTS magnets undergo substantial current changes in short durations, leading to the induction of potentially dangerous voltages that might trigger electrical breakdown at sensitive junctures. In light of these challenges, we embarked on a series of experiments to understand electrical breakdown phenomena under diverse vacuum scenarios. These experiments, supplemented with finite element method (FEM) analysis, paved the way for the derivation of empirical formula. These formulas intend to guide the design of HTS magnets, ensuring their electrical insulation remains robust across a range of vacuum conditions.</description><subject>Electric breakdown</subject><subject>Electric fields</subject><subject>Electrical faults</subject><subject>Electrical insulation</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Empirical analysis</subject><subject>Finite element method</subject><subject>Flashover</subject><subject>Flashover voltage</subject><subject>High temperature superconductors</subject><subject>high-vacuum condition</subject><subject>insulation design</subject><subject>Magnetic resonance imaging</subject><subject>Magnets</subject><subject>Particle accelerators</subject><subject>Rough surfaces</subject><subject>roughness</subject><subject>Sparkover</subject><subject>sparkover voltage</subject><subject>Surface roughness</subject><subject>Thermodynamic efficiency</subject><subject>Vacuum breakdown</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLtOwzAUhi0EEqXwAEgMlphTfIkTeyyhUKRKDC2sluvYrUsaF9sR4u1xVQamc4bvP5cPgFuMJhgj8bCaLpsJQaScUFoxJMozMMKM8YIwzM5zjxguOCH0ElzFuEMIl7xkI2BnndEpOK06-BiM-mz9dw-brQpKJxNcTE5H6Ho4d5tt8aH0MOxh4_vWJef7CK0PMG0NfDLRbXroLVwOBxN0JgadXL_JsOviNbiwqovm5q-OwfvzbNXMi8Xby2szXRSalFXKB5atqTmznNStatm6UjUxiiOFK4wrIphoDUesEpqta8QYaQmitSBqram2lo7B_WnuIfivwcQkd34IfV4piaAcEZrfzhQ-UTr4GIOx8hDcXoUfiZE86pRHnfKoU_7pzJm7U8YZY_7xZQYEo7-LRXF6</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Park, Junyoung</creator><creator>Shin, Woocheol</creator><creator>Jeong, Minkyung</creator><creator>Ku, Bonhyuk</creator><creator>Lee, Hobin</creator><creator>Park, Jeonghwan</creator><creator>Hahn, Garam</creator><creator>Choi, Seyong</creator><creator>Hahn, Seungyong</creator><creator>Kang, Hyoungku</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7507-5304</orcidid><orcidid>https://orcid.org/0000-0001-8035-4279</orcidid><orcidid>https://orcid.org/0000-0002-5421-0455</orcidid><orcidid>https://orcid.org/0000-0002-7756-7844</orcidid><orcidid>https://orcid.org/0000-0002-7554-610X</orcidid><orcidid>https://orcid.org/0000-0003-0777-6912</orcidid><orcidid>https://orcid.org/0000-0002-4511-4162</orcidid><orcidid>https://orcid.org/0000-0003-2374-139X</orcidid><orcidid>https://orcid.org/0000-0002-4230-8076</orcidid><orcidid>https://orcid.org/0000-0001-6019-9953</orcidid></search><sort><creationdate>20240801</creationdate><title>Electrical Breakdown Characteristics in High-Vacuum Conditions for the Design of Superconducting Coils</title><author>Park, Junyoung ; Shin, Woocheol ; Jeong, Minkyung ; Ku, Bonhyuk ; Lee, Hobin ; Park, Jeonghwan ; Hahn, Garam ; Choi, Seyong ; Hahn, Seungyong ; Kang, Hyoungku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-824de785f827dad5b6a72ea80a161162959de80569c5b70552d203792abc3cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electric breakdown</topic><topic>Electric fields</topic><topic>Electrical faults</topic><topic>Electrical insulation</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Empirical analysis</topic><topic>Finite element method</topic><topic>Flashover</topic><topic>Flashover voltage</topic><topic>High temperature superconductors</topic><topic>high-vacuum condition</topic><topic>insulation design</topic><topic>Magnetic resonance imaging</topic><topic>Magnets</topic><topic>Particle accelerators</topic><topic>Rough surfaces</topic><topic>roughness</topic><topic>Sparkover</topic><topic>sparkover voltage</topic><topic>Surface roughness</topic><topic>Thermodynamic efficiency</topic><topic>Vacuum breakdown</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Junyoung</creatorcontrib><creatorcontrib>Shin, Woocheol</creatorcontrib><creatorcontrib>Jeong, Minkyung</creatorcontrib><creatorcontrib>Ku, Bonhyuk</creatorcontrib><creatorcontrib>Lee, Hobin</creatorcontrib><creatorcontrib>Park, Jeonghwan</creatorcontrib><creatorcontrib>Hahn, Garam</creatorcontrib><creatorcontrib>Choi, Seyong</creatorcontrib><creatorcontrib>Hahn, Seungyong</creatorcontrib><creatorcontrib>Kang, Hyoungku</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Park, Junyoung</au><au>Shin, Woocheol</au><au>Jeong, Minkyung</au><au>Ku, Bonhyuk</au><au>Lee, Hobin</au><au>Park, Jeonghwan</au><au>Hahn, Garam</au><au>Choi, Seyong</au><au>Hahn, Seungyong</au><au>Kang, Hyoungku</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Breakdown Characteristics in High-Vacuum Conditions for the Design of Superconducting Coils</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>In recent years, the utilization of high-temperature superconductors (HTS) in medical devices, such as magnetic resonance imaging (MRI) and particle accelerators for cancer treatment, has seen significant growth. This study focuses on the electrical insulation design of fast-ramping HTS saddle magnets, pivotal in reducing the volume and consequent operational costs of particle accelerators. Generally, these HTS magnets are operated under high-vacuum conditions to deter external heat intrusion and optimize thermal efficiency. However, their intricate geometries can inadvertently result in areas of localized vacuum degradation, undermining their electrical insulation capabilities, especially in environments with pressures less than 0.001 Pa. Further, this research delves into the influence of vacuum degree and insulator surface roughness on the electrical breakdown properties. The focus is primarily on the distinctions between sparkover and flashover. Due to their fast-ramping nature, HTS magnets undergo substantial current changes in short durations, leading to the induction of potentially dangerous voltages that might trigger electrical breakdown at sensitive junctures. In light of these challenges, we embarked on a series of experiments to understand electrical breakdown phenomena under diverse vacuum scenarios. These experiments, supplemented with finite element method (FEM) analysis, paved the way for the derivation of empirical formula. These formulas intend to guide the design of HTS magnets, ensuring their electrical insulation remains robust across a range of vacuum conditions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3365094</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7507-5304</orcidid><orcidid>https://orcid.org/0000-0001-8035-4279</orcidid><orcidid>https://orcid.org/0000-0002-5421-0455</orcidid><orcidid>https://orcid.org/0000-0002-7756-7844</orcidid><orcidid>https://orcid.org/0000-0002-7554-610X</orcidid><orcidid>https://orcid.org/0000-0003-0777-6912</orcidid><orcidid>https://orcid.org/0000-0002-4511-4162</orcidid><orcidid>https://orcid.org/0000-0003-2374-139X</orcidid><orcidid>https://orcid.org/0000-0002-4230-8076</orcidid><orcidid>https://orcid.org/0000-0001-6019-9953</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-7
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_10433695
source IEEE Electronic Library (IEL)
subjects Electric breakdown
Electric fields
Electrical faults
Electrical insulation
Electrodes
Electrons
Empirical analysis
Finite element method
Flashover
Flashover voltage
High temperature superconductors
high-vacuum condition
insulation design
Magnetic resonance imaging
Magnets
Particle accelerators
Rough surfaces
roughness
Sparkover
sparkover voltage
Surface roughness
Thermodynamic efficiency
Vacuum breakdown
title Electrical Breakdown Characteristics in High-Vacuum Conditions for the Design of Superconducting Coils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Breakdown%20Characteristics%20in%20High-Vacuum%20Conditions%20for%20the%20Design%20of%20Superconducting%20Coils&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Park,%20Junyoung&rft.date=2024-08-01&rft.volume=34&rft.issue=5&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3365094&rft_dat=%3Cproquest_RIE%3E2938023484%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938023484&rft_id=info:pmid/&rft_ieee_id=10433695&rfr_iscdi=true