Pole-to-Pole Fault Management for Electric Aircraft DC Network with HTS Cables
Full-electric propulsion aircraft is attracting a lot of interests in recent years. To improve the power density of electric propulsion systems, superconducting power devices are attractive due to their high current density and high efficiency. Fault analysis and fault management techniques with the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2024-05, Vol.34 (3), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Full-electric propulsion aircraft is attracting a lot of interests in recent years. To improve the power density of electric propulsion systems, superconducting power devices are attractive due to their high current density and high efficiency. Fault analysis and fault management techniques with the combination of superconducting power devices are critically needed to ensure the safety and reliability of electric propulsion systems. In this paper, pole-to-pole fault analysis is carried out for the DC network in electric aircraft. High temperature superconducting (HTS) cable modeling is taken into consideration for the fault characterization. A system-level pole-to-pole fault management strategy is proposed to detect and isolate the faults at different locations. The analytical results are verified by the simulation models using Matlab/Simscape. The studies in this paper provide valuable guidance for the design and setting of protection systems in electric aircraft. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2024.3363127 |