Knowledge Caching for Federated Learning in Wireless Cellular Networks
This work examines a novel wireless knowledge caching framework where machine learning models (i.e., knowledge) are cached at local small cell base-stations (SBSs) to facilitate both federated training and access of the models by users. We first consider a single-SBS scenario, where the caching deci...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-08, Vol.23 (8), p.9235-9250 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9250 |
---|---|
container_issue | 8 |
container_start_page | 9235 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Zheng, Xin-Ying Lee, Ming-Chun Hsu, Kai-Chieh Hong, Y.-W. Peter |
description | This work examines a novel wireless knowledge caching framework where machine learning models (i.e., knowledge) are cached at local small cell base-stations (SBSs) to facilitate both federated training and access of the models by users. We first consider a single-SBS scenario, where the caching decision, user selection, and wireless resource allocation are jointly determined by minimizing a training error bound subject to constraints on the cache capacity, the communication and computation latency, and the energy consumption. The solution is obtained by first computing the minimum achievable training loss for each model, followed by the optimization of the binary caching variables, which reduces to a 0-1 knapsack problem. The proposed framework is then extended to the multiple-SBS scenario where the user association among SBSs is further examined. We adopt a dual-ascent method where Lagrange multipliers are introduced and updated in each iteration to regularize the dependence among user selection and association. Given the Lagrange multipliers, the caching decision, user selection, resource allocation and user association variables are optimized in turn using a block coordinate descent algorithm. Simulation results show that the proposed scheme can achieve a training error bound that is lower than preference-only and random caching policies in both scenarios. |
doi_str_mv | 10.1109/TWC.2024.3360642 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10433131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10433131</ieee_id><sourcerecordid>3092924491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-cf06cae829158bb4fe4e827b2fff219ad3e2c99b606e1841fd2b6a03730819723</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk6xz44TjyiiBVHBUtTRcpJzSQlJsVNV_HsctQO64T70vne6h5BbzmacM_2wWhczYCBnQiimJJyRCU_TPAGQ-flYC5VwyNQluQphyxjPVJpOyPy16w8t1hukha0-m25DXe_pHGv0dsCaLtH6bhw3HV03HlsMgRbYtvvWevqGw6H3X-GaXDjbBrw55Sn5mD-tiudk-b54KR6XSQUyHZLKMVVZzEHzNC9L6VDGJivBOQdc21ogVFqX8QPkueSuhlJZJjLBcq4zEFNyf9y78_3PHsNgtv3ed_GkEUyDBik1jyp2VFW-D8GjMzvffFv_azgzIy0TaZmRljnRipa7o6VBxH9yKQSP8QfPZGUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092924491</pqid></control><display><type>article</type><title>Knowledge Caching for Federated Learning in Wireless Cellular Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Xin-Ying ; Lee, Ming-Chun ; Hsu, Kai-Chieh ; Hong, Y.-W. Peter</creator><creatorcontrib>Zheng, Xin-Ying ; Lee, Ming-Chun ; Hsu, Kai-Chieh ; Hong, Y.-W. Peter</creatorcontrib><description>This work examines a novel wireless knowledge caching framework where machine learning models (i.e., knowledge) are cached at local small cell base-stations (SBSs) to facilitate both federated training and access of the models by users. We first consider a single-SBS scenario, where the caching decision, user selection, and wireless resource allocation are jointly determined by minimizing a training error bound subject to constraints on the cache capacity, the communication and computation latency, and the energy consumption. The solution is obtained by first computing the minimum achievable training loss for each model, followed by the optimization of the binary caching variables, which reduces to a 0-1 knapsack problem. The proposed framework is then extended to the multiple-SBS scenario where the user association among SBSs is further examined. We adopt a dual-ascent method where Lagrange multipliers are introduced and updated in each iteration to regularize the dependence among user selection and association. Given the Lagrange multipliers, the caching decision, user selection, resource allocation and user association variables are optimized in turn using a block coordinate descent algorithm. Simulation results show that the proposed scheme can achieve a training error bound that is lower than preference-only and random caching policies in both scenarios.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3360642</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Caching ; Cellular communication ; Computational modeling ; Data models ; Energy consumption ; Federated learning ; Knapsack problem ; Lagrange multiplier ; Loss measurement ; Machine learning ; multi-cell multi-user networks ; Network latency ; Random variables ; Resource allocation ; Resource management ; resource optimization ; Servers ; Training ; Wireless caching networks ; Wireless communication ; Wireless communications ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2024-08, Vol.23 (8), p.9235-9250</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-cf06cae829158bb4fe4e827b2fff219ad3e2c99b606e1841fd2b6a03730819723</cites><orcidid>0000-0002-3493-3998 ; 0009-0007-3311-381X ; 0000-0001-7043-8276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10433131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10433131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Xin-Ying</creatorcontrib><creatorcontrib>Lee, Ming-Chun</creatorcontrib><creatorcontrib>Hsu, Kai-Chieh</creatorcontrib><creatorcontrib>Hong, Y.-W. Peter</creatorcontrib><title>Knowledge Caching for Federated Learning in Wireless Cellular Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This work examines a novel wireless knowledge caching framework where machine learning models (i.e., knowledge) are cached at local small cell base-stations (SBSs) to facilitate both federated training and access of the models by users. We first consider a single-SBS scenario, where the caching decision, user selection, and wireless resource allocation are jointly determined by minimizing a training error bound subject to constraints on the cache capacity, the communication and computation latency, and the energy consumption. The solution is obtained by first computing the minimum achievable training loss for each model, followed by the optimization of the binary caching variables, which reduces to a 0-1 knapsack problem. The proposed framework is then extended to the multiple-SBS scenario where the user association among SBSs is further examined. We adopt a dual-ascent method where Lagrange multipliers are introduced and updated in each iteration to regularize the dependence among user selection and association. Given the Lagrange multipliers, the caching decision, user selection, resource allocation and user association variables are optimized in turn using a block coordinate descent algorithm. Simulation results show that the proposed scheme can achieve a training error bound that is lower than preference-only and random caching policies in both scenarios.</description><subject>Algorithms</subject><subject>Caching</subject><subject>Cellular communication</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Energy consumption</subject><subject>Federated learning</subject><subject>Knapsack problem</subject><subject>Lagrange multiplier</subject><subject>Loss measurement</subject><subject>Machine learning</subject><subject>multi-cell multi-user networks</subject><subject>Network latency</subject><subject>Random variables</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>resource optimization</subject><subject>Servers</subject><subject>Training</subject><subject>Wireless caching networks</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk6xz44TjyiiBVHBUtTRcpJzSQlJsVNV_HsctQO64T70vne6h5BbzmacM_2wWhczYCBnQiimJJyRCU_TPAGQ-flYC5VwyNQluQphyxjPVJpOyPy16w8t1hukha0-m25DXe_pHGv0dsCaLtH6bhw3HV03HlsMgRbYtvvWevqGw6H3X-GaXDjbBrw55Sn5mD-tiudk-b54KR6XSQUyHZLKMVVZzEHzNC9L6VDGJivBOQdc21ogVFqX8QPkueSuhlJZJjLBcq4zEFNyf9y78_3PHsNgtv3ed_GkEUyDBik1jyp2VFW-D8GjMzvffFv_azgzIy0TaZmRljnRipa7o6VBxH9yKQSP8QfPZGUc</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zheng, Xin-Ying</creator><creator>Lee, Ming-Chun</creator><creator>Hsu, Kai-Chieh</creator><creator>Hong, Y.-W. Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3493-3998</orcidid><orcidid>https://orcid.org/0009-0007-3311-381X</orcidid><orcidid>https://orcid.org/0000-0001-7043-8276</orcidid></search><sort><creationdate>20240801</creationdate><title>Knowledge Caching for Federated Learning in Wireless Cellular Networks</title><author>Zheng, Xin-Ying ; Lee, Ming-Chun ; Hsu, Kai-Chieh ; Hong, Y.-W. Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-cf06cae829158bb4fe4e827b2fff219ad3e2c99b606e1841fd2b6a03730819723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Caching</topic><topic>Cellular communication</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Energy consumption</topic><topic>Federated learning</topic><topic>Knapsack problem</topic><topic>Lagrange multiplier</topic><topic>Loss measurement</topic><topic>Machine learning</topic><topic>multi-cell multi-user networks</topic><topic>Network latency</topic><topic>Random variables</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>resource optimization</topic><topic>Servers</topic><topic>Training</topic><topic>Wireless caching networks</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xin-Ying</creatorcontrib><creatorcontrib>Lee, Ming-Chun</creatorcontrib><creatorcontrib>Hsu, Kai-Chieh</creatorcontrib><creatorcontrib>Hong, Y.-W. Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Xin-Ying</au><au>Lee, Ming-Chun</au><au>Hsu, Kai-Chieh</au><au>Hong, Y.-W. Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge Caching for Federated Learning in Wireless Cellular Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>23</volume><issue>8</issue><spage>9235</spage><epage>9250</epage><pages>9235-9250</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This work examines a novel wireless knowledge caching framework where machine learning models (i.e., knowledge) are cached at local small cell base-stations (SBSs) to facilitate both federated training and access of the models by users. We first consider a single-SBS scenario, where the caching decision, user selection, and wireless resource allocation are jointly determined by minimizing a training error bound subject to constraints on the cache capacity, the communication and computation latency, and the energy consumption. The solution is obtained by first computing the minimum achievable training loss for each model, followed by the optimization of the binary caching variables, which reduces to a 0-1 knapsack problem. The proposed framework is then extended to the multiple-SBS scenario where the user association among SBSs is further examined. We adopt a dual-ascent method where Lagrange multipliers are introduced and updated in each iteration to regularize the dependence among user selection and association. Given the Lagrange multipliers, the caching decision, user selection, resource allocation and user association variables are optimized in turn using a block coordinate descent algorithm. Simulation results show that the proposed scheme can achieve a training error bound that is lower than preference-only and random caching policies in both scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3360642</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3493-3998</orcidid><orcidid>https://orcid.org/0009-0007-3311-381X</orcidid><orcidid>https://orcid.org/0000-0001-7043-8276</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-08, Vol.23 (8), p.9235-9250 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_10433131 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Caching Cellular communication Computational modeling Data models Energy consumption Federated learning Knapsack problem Lagrange multiplier Loss measurement Machine learning multi-cell multi-user networks Network latency Random variables Resource allocation Resource management resource optimization Servers Training Wireless caching networks Wireless communication Wireless communications Wireless networks |
title | Knowledge Caching for Federated Learning in Wireless Cellular Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A13%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20Caching%20for%20Federated%20Learning%20in%20Wireless%20Cellular%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Zheng,%20Xin-Ying&rft.date=2024-08-01&rft.volume=23&rft.issue=8&rft.spage=9235&rft.epage=9250&rft.pages=9235-9250&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3360642&rft_dat=%3Cproquest_RIE%3E3092924491%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092924491&rft_id=info:pmid/&rft_ieee_id=10433131&rfr_iscdi=true |