Interfacial Layer Selection Methodology for Customized Ferroelectric Memories
This study presents a material selection strategy for the interfacial layer (IL) in ferroelectric (FE) memory stacks. The nucleation-limited switching (NLS) model was applied to analyze the switching kinetics of the metal/FE/insulator/metal (MFIM) structure, where Hf _{\text{0.5}} Zr _{\text{0.5}} O...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-03, Vol.71 (3), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Lee, Hyun Jae Moon, Taehwan Nam, Seunggeol Bae, Hagyoul Choe, Duk-Hyun Jo, Sanghyun Lee, Yunseong Park, Yoonsang Kim, Kihong Heo, Jinseong |
description | This study presents a material selection strategy for the interfacial layer (IL) in ferroelectric (FE) memory stacks. The nucleation-limited switching (NLS) model was applied to analyze the switching kinetics of the metal/FE/insulator/metal (MFIM) structure, where Hf _{\text{0.5}} Zr _{\text{0.5}} O _{\text{2}} (HZO) was used as the FE. Activation field ( \textit{E}_{\textit{a}} ) and characteristic switching time ( \tau ) were extracted for various 1-nm-thick ILs, including those of SiO _{\text{2}} , La _{\text{2}} O _{\text{3}} (LaO), AlN, and Hf _{\text{3}} N _{\text{4}} (HfN). The adaptation of HZO/LaO reduced the \textit{E}_{\textit{a}} by \sim 44% in relation to that of HZO without an IL (MFM-HZO), resulting in considerably faster switching in the low-electric-field ( E ) region ( |
doi_str_mv | 10.1109/TED.2024.3360009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10431722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10431722</ieee_id><sourcerecordid>2933609569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-807d272a1a830ce76d23189d08b9404b9a60492133ffa80071c928b1540623053</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqWwMzBEYk54_ohjj6i0UKkVA2W2XOcFXKV1sdOh_PqmtAPT05XOvU86hNxTKCgF_bQYvxQMmCg4lwCgL8iAlmWVaynkJRkAUJVrrvg1uUlp1UcpBBuQ-XTTYWys87bNZnaPMfvAFl3nwyabY_cd6tCGr33WhJiNdqkLa_-LdTbBGMMfGL3rwXWIHtMtuWpsm_DufIfkczJejN7y2fvrdPQ8yx0TZZcrqGpWMUut4uCwkjXjVOka1FILEEttJQjNKOdNYxVARZ1maklLAZJxKPmQPJ52tzH87DB1ZhV2cdO_NEwfBehS6p6CE-ViSCliY7bRr23cGwrmKM300sxRmjlL6ysPp4pHxH-44LRijB8A0IBmrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933609569</pqid></control><display><type>article</type><title>Interfacial Layer Selection Methodology for Customized Ferroelectric Memories</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Hyun Jae ; Moon, Taehwan ; Nam, Seunggeol ; Bae, Hagyoul ; Choe, Duk-Hyun ; Jo, Sanghyun ; Lee, Yunseong ; Park, Yoonsang ; Kim, Kihong ; Heo, Jinseong</creator><creatorcontrib>Lee, Hyun Jae ; Moon, Taehwan ; Nam, Seunggeol ; Bae, Hagyoul ; Choe, Duk-Hyun ; Jo, Sanghyun ; Lee, Yunseong ; Park, Yoonsang ; Kim, Kihong ; Heo, Jinseong</creatorcontrib><description><![CDATA[This study presents a material selection strategy for the interfacial layer (IL) in ferroelectric (FE) memory stacks. The nucleation-limited switching (NLS) model was applied to analyze the switching kinetics of the metal/FE/insulator/metal (MFIM) structure, where Hf<inline-formula> <tex-math notation="LaTeX">_{\text{0.5}}</tex-math> </inline-formula>Zr<inline-formula> <tex-math notation="LaTeX">_{\text{0.5}}</tex-math> </inline-formula>O<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula> (HZO) was used as the FE. Activation field (<inline-formula> <tex-math notation="LaTeX">\textit{E}_{\textit{a}}</tex-math> </inline-formula>) and characteristic switching time (<inline-formula> <tex-math notation="LaTeX">\tau</tex-math> </inline-formula>) were extracted for various 1-nm-thick ILs, including those of SiO<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula>, La<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula>O<inline-formula> <tex-math notation="LaTeX">_{\text{3}}</tex-math> </inline-formula> (LaO), AlN, and Hf<inline-formula> <tex-math notation="LaTeX">_{\text{3}}</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">_{\text{4}}</tex-math> </inline-formula> (HfN). The adaptation of HZO/LaO reduced the <inline-formula> <tex-math notation="LaTeX">\textit{E}_{\textit{a}}</tex-math> </inline-formula> by <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>44% in relation to that of HZO without an IL (MFM-HZO), resulting in considerably faster switching in the low-electric-field ( E ) region (<inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula>4 MV<inline-formula> <tex-math notation="LaTeX">\cdot</tex-math> </inline-formula>cm<inline-formula> <tex-math notation="LaTeX">^{-\text{1}}</tex-math> </inline-formula>)-a highly suitable criterion for applications in 1-bit nonvolatile memories. In contrast, HZO/AlN showed the broadest <inline-formula> <tex-math notation="LaTeX">\tau</tex-math> </inline-formula> distribution due to the large <inline-formula> <tex-math notation="LaTeX">\textit{E}_{\textit{a}}</tex-math> </inline-formula> (<inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>200% of MFM-HZO), which led to the stabilization of multiple-intermediate polarization states. Promising potentiation and depression characteristics were obtained for multibit synapse applications when an incremental pulse time scheme with a step size of 10 ns was used.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3360009</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aluminum nitride ; Electric fields ; Electrodes ; FeFETs ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics (FEs) ; Fitting ; hafnium oxide ; III-V semiconductor materials ; Iron ; Lanthanum oxides ; Materials selection ; Nucleation ; nucleation-limited switching (NLS) ; Silicon dioxide ; Switches ; Switching ; synapse</subject><ispartof>IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-807d272a1a830ce76d23189d08b9404b9a60492133ffa80071c928b1540623053</cites><orcidid>0000-0003-2037-2883 ; 0000-0002-6971-1690 ; 0000-0003-2530-488X ; 0000-0002-2462-4198 ; 0000-0003-1197-6677 ; 0000-0001-5017-2853</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10431722$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10431722$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Hyun Jae</creatorcontrib><creatorcontrib>Moon, Taehwan</creatorcontrib><creatorcontrib>Nam, Seunggeol</creatorcontrib><creatorcontrib>Bae, Hagyoul</creatorcontrib><creatorcontrib>Choe, Duk-Hyun</creatorcontrib><creatorcontrib>Jo, Sanghyun</creatorcontrib><creatorcontrib>Lee, Yunseong</creatorcontrib><creatorcontrib>Park, Yoonsang</creatorcontrib><creatorcontrib>Kim, Kihong</creatorcontrib><creatorcontrib>Heo, Jinseong</creatorcontrib><title>Interfacial Layer Selection Methodology for Customized Ferroelectric Memories</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This study presents a material selection strategy for the interfacial layer (IL) in ferroelectric (FE) memory stacks. The nucleation-limited switching (NLS) model was applied to analyze the switching kinetics of the metal/FE/insulator/metal (MFIM) structure, where Hf<inline-formula> <tex-math notation="LaTeX">_{\text{0.5}}</tex-math> </inline-formula>Zr<inline-formula> <tex-math notation="LaTeX">_{\text{0.5}}</tex-math> </inline-formula>O<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula> (HZO) was used as the FE. Activation field (<inline-formula> <tex-math notation="LaTeX">\textit{E}_{\textit{a}}</tex-math> </inline-formula>) and characteristic switching time (<inline-formula> <tex-math notation="LaTeX">\tau</tex-math> </inline-formula>) were extracted for various 1-nm-thick ILs, including those of SiO<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula>, La<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula>O<inline-formula> <tex-math notation="LaTeX">_{\text{3}}</tex-math> </inline-formula> (LaO), AlN, and Hf<inline-formula> <tex-math notation="LaTeX">_{\text{3}}</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">_{\text{4}}</tex-math> </inline-formula> (HfN). The adaptation of HZO/LaO reduced the <inline-formula> <tex-math notation="LaTeX">\textit{E}_{\textit{a}}</tex-math> </inline-formula> by <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>44% in relation to that of HZO without an IL (MFM-HZO), resulting in considerably faster switching in the low-electric-field ( E ) region (<inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula>4 MV<inline-formula> <tex-math notation="LaTeX">\cdot</tex-math> </inline-formula>cm<inline-formula> <tex-math notation="LaTeX">^{-\text{1}}</tex-math> </inline-formula>)-a highly suitable criterion for applications in 1-bit nonvolatile memories. In contrast, HZO/AlN showed the broadest <inline-formula> <tex-math notation="LaTeX">\tau</tex-math> </inline-formula> distribution due to the large <inline-formula> <tex-math notation="LaTeX">\textit{E}_{\textit{a}}</tex-math> </inline-formula> (<inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>200% of MFM-HZO), which led to the stabilization of multiple-intermediate polarization states. Promising potentiation and depression characteristics were obtained for multibit synapse applications when an incremental pulse time scheme with a step size of 10 ns was used.]]></description><subject>Aluminum nitride</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>FeFETs</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics (FEs)</subject><subject>Fitting</subject><subject>hafnium oxide</subject><subject>III-V semiconductor materials</subject><subject>Iron</subject><subject>Lanthanum oxides</subject><subject>Materials selection</subject><subject>Nucleation</subject><subject>nucleation-limited switching (NLS)</subject><subject>Silicon dioxide</subject><subject>Switches</subject><subject>Switching</subject><subject>synapse</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAURS0EEqWwMzBEYk54_ohjj6i0UKkVA2W2XOcFXKV1sdOh_PqmtAPT05XOvU86hNxTKCgF_bQYvxQMmCg4lwCgL8iAlmWVaynkJRkAUJVrrvg1uUlp1UcpBBuQ-XTTYWys87bNZnaPMfvAFl3nwyabY_cd6tCGr33WhJiNdqkLa_-LdTbBGMMfGL3rwXWIHtMtuWpsm_DufIfkczJejN7y2fvrdPQ8yx0TZZcrqGpWMUut4uCwkjXjVOka1FILEEttJQjNKOdNYxVARZ1maklLAZJxKPmQPJ52tzH87DB1ZhV2cdO_NEwfBehS6p6CE-ViSCliY7bRr23cGwrmKM300sxRmjlL6ysPp4pHxH-44LRijB8A0IBmrA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Lee, Hyun Jae</creator><creator>Moon, Taehwan</creator><creator>Nam, Seunggeol</creator><creator>Bae, Hagyoul</creator><creator>Choe, Duk-Hyun</creator><creator>Jo, Sanghyun</creator><creator>Lee, Yunseong</creator><creator>Park, Yoonsang</creator><creator>Kim, Kihong</creator><creator>Heo, Jinseong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2037-2883</orcidid><orcidid>https://orcid.org/0000-0002-6971-1690</orcidid><orcidid>https://orcid.org/0000-0003-2530-488X</orcidid><orcidid>https://orcid.org/0000-0002-2462-4198</orcidid><orcidid>https://orcid.org/0000-0003-1197-6677</orcidid><orcidid>https://orcid.org/0000-0001-5017-2853</orcidid></search><sort><creationdate>20240301</creationdate><title>Interfacial Layer Selection Methodology for Customized Ferroelectric Memories</title><author>Lee, Hyun Jae ; Moon, Taehwan ; Nam, Seunggeol ; Bae, Hagyoul ; Choe, Duk-Hyun ; Jo, Sanghyun ; Lee, Yunseong ; Park, Yoonsang ; Kim, Kihong ; Heo, Jinseong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-807d272a1a830ce76d23189d08b9404b9a60492133ffa80071c928b1540623053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aluminum nitride</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>FeFETs</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics (FEs)</topic><topic>Fitting</topic><topic>hafnium oxide</topic><topic>III-V semiconductor materials</topic><topic>Iron</topic><topic>Lanthanum oxides</topic><topic>Materials selection</topic><topic>Nucleation</topic><topic>nucleation-limited switching (NLS)</topic><topic>Silicon dioxide</topic><topic>Switches</topic><topic>Switching</topic><topic>synapse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyun Jae</creatorcontrib><creatorcontrib>Moon, Taehwan</creatorcontrib><creatorcontrib>Nam, Seunggeol</creatorcontrib><creatorcontrib>Bae, Hagyoul</creatorcontrib><creatorcontrib>Choe, Duk-Hyun</creatorcontrib><creatorcontrib>Jo, Sanghyun</creatorcontrib><creatorcontrib>Lee, Yunseong</creatorcontrib><creatorcontrib>Park, Yoonsang</creatorcontrib><creatorcontrib>Kim, Kihong</creatorcontrib><creatorcontrib>Heo, Jinseong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Hyun Jae</au><au>Moon, Taehwan</au><au>Nam, Seunggeol</au><au>Bae, Hagyoul</au><au>Choe, Duk-Hyun</au><au>Jo, Sanghyun</au><au>Lee, Yunseong</au><au>Park, Yoonsang</au><au>Kim, Kihong</au><au>Heo, Jinseong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Layer Selection Methodology for Customized Ferroelectric Memories</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This study presents a material selection strategy for the interfacial layer (IL) in ferroelectric (FE) memory stacks. The nucleation-limited switching (NLS) model was applied to analyze the switching kinetics of the metal/FE/insulator/metal (MFIM) structure, where Hf<inline-formula> <tex-math notation="LaTeX">_{\text{0.5}}</tex-math> </inline-formula>Zr<inline-formula> <tex-math notation="LaTeX">_{\text{0.5}}</tex-math> </inline-formula>O<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula> (HZO) was used as the FE. Activation field (<inline-formula> <tex-math notation="LaTeX">\textit{E}_{\textit{a}}</tex-math> </inline-formula>) and characteristic switching time (<inline-formula> <tex-math notation="LaTeX">\tau</tex-math> </inline-formula>) were extracted for various 1-nm-thick ILs, including those of SiO<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula>, La<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula>O<inline-formula> <tex-math notation="LaTeX">_{\text{3}}</tex-math> </inline-formula> (LaO), AlN, and Hf<inline-formula> <tex-math notation="LaTeX">_{\text{3}}</tex-math> </inline-formula>N<inline-formula> <tex-math notation="LaTeX">_{\text{4}}</tex-math> </inline-formula> (HfN). The adaptation of HZO/LaO reduced the <inline-formula> <tex-math notation="LaTeX">\textit{E}_{\textit{a}}</tex-math> </inline-formula> by <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>44% in relation to that of HZO without an IL (MFM-HZO), resulting in considerably faster switching in the low-electric-field ( E ) region (<inline-formula> <tex-math notation="LaTeX"><</tex-math> </inline-formula>4 MV<inline-formula> <tex-math notation="LaTeX">\cdot</tex-math> </inline-formula>cm<inline-formula> <tex-math notation="LaTeX">^{-\text{1}}</tex-math> </inline-formula>)-a highly suitable criterion for applications in 1-bit nonvolatile memories. In contrast, HZO/AlN showed the broadest <inline-formula> <tex-math notation="LaTeX">\tau</tex-math> </inline-formula> distribution due to the large <inline-formula> <tex-math notation="LaTeX">\textit{E}_{\textit{a}}</tex-math> </inline-formula> (<inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>200% of MFM-HZO), which led to the stabilization of multiple-intermediate polarization states. Promising potentiation and depression characteristics were obtained for multibit synapse applications when an incremental pulse time scheme with a step size of 10 ns was used.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3360009</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2037-2883</orcidid><orcidid>https://orcid.org/0000-0002-6971-1690</orcidid><orcidid>https://orcid.org/0000-0003-2530-488X</orcidid><orcidid>https://orcid.org/0000-0002-2462-4198</orcidid><orcidid>https://orcid.org/0000-0003-1197-6677</orcidid><orcidid>https://orcid.org/0000-0001-5017-2853</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1-6 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_10431722 |
source | IEEE Electronic Library (IEL) |
subjects | Aluminum nitride Electric fields Electrodes FeFETs Ferroelectric materials Ferroelectricity Ferroelectrics (FEs) Fitting hafnium oxide III-V semiconductor materials Iron Lanthanum oxides Materials selection Nucleation nucleation-limited switching (NLS) Silicon dioxide Switches Switching synapse |
title | Interfacial Layer Selection Methodology for Customized Ferroelectric Memories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A28%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Layer%20Selection%20Methodology%20for%20Customized%20Ferroelectric%20Memories&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Lee,%20Hyun%20Jae&rft.date=2024-03-01&rft.volume=71&rft.issue=3&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3360009&rft_dat=%3Cproquest_RIE%3E2933609569%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933609569&rft_id=info:pmid/&rft_ieee_id=10431722&rfr_iscdi=true |