A 0.065 mm² Inductive Coupling Based Dual Core mm-Wave VCO With 183 dBc/Hz FoMT

This paper presents a novel dual core inductive coupling based area efficient mm-Wave voltage controlled oscillator fabricated in 40 nm CMOS process for K-band applications. New inductive coupling techniques have been implemented for resonant mode switching between two VCO cores, each having an indu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2024-06, Vol.71 (6), p.2550-2562
Hauptverfasser: Batabyal, Anik, Zele, Rajesh H., Khyalia, Santosh Kumar, Wang, Huei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2562
container_issue 6
container_start_page 2550
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 71
creator Batabyal, Anik
Zele, Rajesh H.
Khyalia, Santosh Kumar
Wang, Huei
description This paper presents a novel dual core inductive coupling based area efficient mm-Wave voltage controlled oscillator fabricated in 40 nm CMOS process for K-band applications. New inductive coupling techniques have been implemented for resonant mode switching between two VCO cores, each having an inductive divider based LC tank. Detailed mathematical analysis has been developed on the effect of various higher-order harmonics on waveform symmetry. Simulations are performed to explore the time-variance property of various noise-contributing elements in the VCO. The VCO fabricated in 40 nm CMOS process without an ultra-thick top metal layer occupies a core area of 0.065 mm 2. The proposed layout floorplan reduces the active area requirement of multi-core VCO. The measured frequency tuning range is from 21.6 to 25.5 GHz. The proposed dual core VCO shows measured phase noise of -112 dBc/Hz and -115 dBc/Hz at 3 MHz and 10 MHz offset respectively for a center frequency of 22.5 GHz in 40 nm CMOS process. The VCO achieves a measured FoMT of 183 dBc/Hz at an offset of 3 MHz for a power consumption of 18.4 mA and a tuning range of > 16 \% demonstrating a practical solution.
doi_str_mv 10.1109/TCSI.2024.3359294
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10431552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10431552</ieee_id><sourcerecordid>3061459424</sourcerecordid><originalsourceid>FETCH-LOGICAL-i134t-671359e6991b5da079354325104517a5145653479a928aa3daf324c47c09fd333</originalsourceid><addsrcrecordid>eNotkN1Kw0AQhRdRsFYfQPBiweukszu7SfayjdYGKhWM9jKs2Y2m5KfmR9DH8hF8Mlfq1RkO38wZDiGXDHzGQM3S-DHxOXDhI0rFlTgiEyZl5EEEwfHfLJQXIY9OyVnf7wC4AmQT8jCn4EMgaV3_fNOkMWM-lB-Wxu24r8rmlS50bw29GXXlvM46zttqBzzHG7othzfKIqRmkc9WX3TZ3qfn5KTQVW8v_nVKnpa3abzy1pu7JJ6vvZKhGLwgZO5PGyjFXqTRECqUArlkICQLtWRCBhJFqLTikdZodIFc5CLMQRUGEafk-nB337Xvo-2HbNeOXeMiM4TArSvBhaOuDlRprc32XVnr7jNzIejK4fgLu7BU4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061459424</pqid></control><display><type>article</type><title>A 0.065 mm² Inductive Coupling Based Dual Core mm-Wave VCO With 183 dBc/Hz FoMT</title><source>IEEE Electronic Library (IEL)</source><creator>Batabyal, Anik ; Zele, Rajesh H. ; Khyalia, Santosh Kumar ; Wang, Huei</creator><creatorcontrib>Batabyal, Anik ; Zele, Rajesh H. ; Khyalia, Santosh Kumar ; Wang, Huei</creatorcontrib><description>This paper presents a novel dual core inductive coupling based area efficient mm-Wave voltage controlled oscillator fabricated in 40 nm CMOS process for K-band applications. New inductive coupling techniques have been implemented for resonant mode switching between two VCO cores, each having an inductive divider based LC tank. Detailed mathematical analysis has been developed on the effect of various higher-order harmonics on waveform symmetry. Simulations are performed to explore the time-variance property of various noise-contributing elements in the VCO. The VCO fabricated in 40 nm CMOS process without an ultra-thick top metal layer occupies a core area of 0.065 mm 2. The proposed layout floorplan reduces the active area requirement of multi-core VCO. The measured frequency tuning range is from 21.6 to 25.5 GHz. The proposed dual core VCO shows measured phase noise of -112 dBc/Hz and -115 dBc/Hz at 3 MHz and 10 MHz offset respectively for a center frequency of 22.5 GHz in 40 nm CMOS process. The VCO achieves a measured FoMT of 183 dBc/Hz at an offset of 3 MHz for a power consumption of 18.4 mA and a tuning range of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;&gt; 16 \% &lt;/tex-math&gt;&lt;/inline-formula&gt; demonstrating a practical solution.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2024.3359294</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>1/f noise ; CMOS ; flicker noise ; Harmonic analysis ; Higher harmonics ; impulse sensitivity function (ISF) ; Inductance ; Inductive coupling ; K-band ; Mathematical analysis ; Millimeter waves ; mm-Wave ; mode switching ; multi-core ; Phase noise ; Power consumption ; Q-factor ; Tuning ; voltage controlled oscillator ; Voltage controlled oscillators ; voltage-biased ; waveform shaping ; Waveforms</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2024-06, Vol.71 (6), p.2550-2562</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9903-1979 ; 0009-0007-6239-8404 ; 0000-0002-0615-6714 ; 0000-0001-6570-1340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10431552$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10431552$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Batabyal, Anik</creatorcontrib><creatorcontrib>Zele, Rajesh H.</creatorcontrib><creatorcontrib>Khyalia, Santosh Kumar</creatorcontrib><creatorcontrib>Wang, Huei</creatorcontrib><title>A 0.065 mm² Inductive Coupling Based Dual Core mm-Wave VCO With 183 dBc/Hz FoMT</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>This paper presents a novel dual core inductive coupling based area efficient mm-Wave voltage controlled oscillator fabricated in 40 nm CMOS process for K-band applications. New inductive coupling techniques have been implemented for resonant mode switching between two VCO cores, each having an inductive divider based LC tank. Detailed mathematical analysis has been developed on the effect of various higher-order harmonics on waveform symmetry. Simulations are performed to explore the time-variance property of various noise-contributing elements in the VCO. The VCO fabricated in 40 nm CMOS process without an ultra-thick top metal layer occupies a core area of 0.065 mm 2. The proposed layout floorplan reduces the active area requirement of multi-core VCO. The measured frequency tuning range is from 21.6 to 25.5 GHz. The proposed dual core VCO shows measured phase noise of -112 dBc/Hz and -115 dBc/Hz at 3 MHz and 10 MHz offset respectively for a center frequency of 22.5 GHz in 40 nm CMOS process. The VCO achieves a measured FoMT of 183 dBc/Hz at an offset of 3 MHz for a power consumption of 18.4 mA and a tuning range of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;&gt; 16 \% &lt;/tex-math&gt;&lt;/inline-formula&gt; demonstrating a practical solution.</description><subject>1/f noise</subject><subject>CMOS</subject><subject>flicker noise</subject><subject>Harmonic analysis</subject><subject>Higher harmonics</subject><subject>impulse sensitivity function (ISF)</subject><subject>Inductance</subject><subject>Inductive coupling</subject><subject>K-band</subject><subject>Mathematical analysis</subject><subject>Millimeter waves</subject><subject>mm-Wave</subject><subject>mode switching</subject><subject>multi-core</subject><subject>Phase noise</subject><subject>Power consumption</subject><subject>Q-factor</subject><subject>Tuning</subject><subject>voltage controlled oscillator</subject><subject>Voltage controlled oscillators</subject><subject>voltage-biased</subject><subject>waveform shaping</subject><subject>Waveforms</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotkN1Kw0AQhRdRsFYfQPBiweukszu7SfayjdYGKhWM9jKs2Y2m5KfmR9DH8hF8Mlfq1RkO38wZDiGXDHzGQM3S-DHxOXDhI0rFlTgiEyZl5EEEwfHfLJQXIY9OyVnf7wC4AmQT8jCn4EMgaV3_fNOkMWM-lB-Wxu24r8rmlS50bw29GXXlvM46zttqBzzHG7othzfKIqRmkc9WX3TZ3qfn5KTQVW8v_nVKnpa3abzy1pu7JJ6vvZKhGLwgZO5PGyjFXqTRECqUArlkICQLtWRCBhJFqLTikdZodIFc5CLMQRUGEafk-nB337Xvo-2HbNeOXeMiM4TArSvBhaOuDlRprc32XVnr7jNzIejK4fgLu7BU4g</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Batabyal, Anik</creator><creator>Zele, Rajesh H.</creator><creator>Khyalia, Santosh Kumar</creator><creator>Wang, Huei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9903-1979</orcidid><orcidid>https://orcid.org/0009-0007-6239-8404</orcidid><orcidid>https://orcid.org/0000-0002-0615-6714</orcidid><orcidid>https://orcid.org/0000-0001-6570-1340</orcidid></search><sort><creationdate>20240601</creationdate><title>A 0.065 mm² Inductive Coupling Based Dual Core mm-Wave VCO With 183 dBc/Hz FoMT</title><author>Batabyal, Anik ; Zele, Rajesh H. ; Khyalia, Santosh Kumar ; Wang, Huei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i134t-671359e6991b5da079354325104517a5145653479a928aa3daf324c47c09fd333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1/f noise</topic><topic>CMOS</topic><topic>flicker noise</topic><topic>Harmonic analysis</topic><topic>Higher harmonics</topic><topic>impulse sensitivity function (ISF)</topic><topic>Inductance</topic><topic>Inductive coupling</topic><topic>K-band</topic><topic>Mathematical analysis</topic><topic>Millimeter waves</topic><topic>mm-Wave</topic><topic>mode switching</topic><topic>multi-core</topic><topic>Phase noise</topic><topic>Power consumption</topic><topic>Q-factor</topic><topic>Tuning</topic><topic>voltage controlled oscillator</topic><topic>Voltage controlled oscillators</topic><topic>voltage-biased</topic><topic>waveform shaping</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batabyal, Anik</creatorcontrib><creatorcontrib>Zele, Rajesh H.</creatorcontrib><creatorcontrib>Khyalia, Santosh Kumar</creatorcontrib><creatorcontrib>Wang, Huei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Batabyal, Anik</au><au>Zele, Rajesh H.</au><au>Khyalia, Santosh Kumar</au><au>Wang, Huei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 0.065 mm² Inductive Coupling Based Dual Core mm-Wave VCO With 183 dBc/Hz FoMT</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>71</volume><issue>6</issue><spage>2550</spage><epage>2562</epage><pages>2550-2562</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>This paper presents a novel dual core inductive coupling based area efficient mm-Wave voltage controlled oscillator fabricated in 40 nm CMOS process for K-band applications. New inductive coupling techniques have been implemented for resonant mode switching between two VCO cores, each having an inductive divider based LC tank. Detailed mathematical analysis has been developed on the effect of various higher-order harmonics on waveform symmetry. Simulations are performed to explore the time-variance property of various noise-contributing elements in the VCO. The VCO fabricated in 40 nm CMOS process without an ultra-thick top metal layer occupies a core area of 0.065 mm 2. The proposed layout floorplan reduces the active area requirement of multi-core VCO. The measured frequency tuning range is from 21.6 to 25.5 GHz. The proposed dual core VCO shows measured phase noise of -112 dBc/Hz and -115 dBc/Hz at 3 MHz and 10 MHz offset respectively for a center frequency of 22.5 GHz in 40 nm CMOS process. The VCO achieves a measured FoMT of 183 dBc/Hz at an offset of 3 MHz for a power consumption of 18.4 mA and a tuning range of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;&gt; 16 \% &lt;/tex-math&gt;&lt;/inline-formula&gt; demonstrating a practical solution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2024.3359294</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9903-1979</orcidid><orcidid>https://orcid.org/0009-0007-6239-8404</orcidid><orcidid>https://orcid.org/0000-0002-0615-6714</orcidid><orcidid>https://orcid.org/0000-0001-6570-1340</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2024-06, Vol.71 (6), p.2550-2562
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_10431552
source IEEE Electronic Library (IEL)
subjects 1/f noise
CMOS
flicker noise
Harmonic analysis
Higher harmonics
impulse sensitivity function (ISF)
Inductance
Inductive coupling
K-band
Mathematical analysis
Millimeter waves
mm-Wave
mode switching
multi-core
Phase noise
Power consumption
Q-factor
Tuning
voltage controlled oscillator
Voltage controlled oscillators
voltage-biased
waveform shaping
Waveforms
title A 0.065 mm² Inductive Coupling Based Dual Core mm-Wave VCO With 183 dBc/Hz FoMT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%200.065%20mm%C2%B2%20Inductive%20Coupling%20Based%20Dual%20Core%20mm-Wave%20VCO%20With%20183%20dBc/Hz%20FoMT&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Batabyal,%20Anik&rft.date=2024-06-01&rft.volume=71&rft.issue=6&rft.spage=2550&rft.epage=2562&rft.pages=2550-2562&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2024.3359294&rft_dat=%3Cproquest_RIE%3E3061459424%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061459424&rft_id=info:pmid/&rft_ieee_id=10431552&rfr_iscdi=true