GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block
Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architect...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-04, Vol.24 (7), p.11610-11624 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11624 |
---|---|
container_issue | 7 |
container_start_page | 11610 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Bao, Rina Palaniappan, Kannappan Zhao, Yunxin Seetharaman, Guna |
description | Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architecture for robust context-dependent 3-D point cloud segmentation. GLSNet++ uniquely combines dual streams of global and local feature manifolds to capture multiscale contextual and structural information, addressing challenges due to highly varying object sizes in urban scenes. To effectively and efficiently refine mixed class labels from cross-scale global and local streams, GLSNet++ incorporates a novel graph neural network (GNN)-based demixing block (GDB) for accurately resolving class membership near voxel boundaries with spatial context-dependent feature fusion. We validate GLSNet++ on the IEEE DFT4 LiDAR dataset, achieving competitive city-scale semantic segmentation that can be extended to more classes, higher-resolution point clouds, and larger geographic regions. GLSNet++ exhibits strong generalization when tested on an independent LiDAR dataset from Columbia, Missouri evaluated using OpenStreetMap (OSM). |
doi_str_mv | 10.1109/JSEN.2023.3345747 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10430108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10430108</ieee_id><sourcerecordid>3031398977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2047-175e379ebb00de64e407e167f888fd0b127e53a9412d5375d23e24859a2a298a3</originalsourceid><addsrcrecordid>eNpNkMtKw0AUhoMoWKsPILgYcCmpc-1M3NVeohKiGAvuwjQ5KalJpk4moG9vQrtwdf4D37nwed41wRNCcHD_kizjCcWUTRjjQnJ54o2IEMonkqvTITPscyY_z72Ltt1hTAIp5MjrwiiJwd3dPaCwMhtdId3kKDKZrvzEWdA1WoF2nQW06trSNKgwFkXlYvaO3kzZODSvTJejBGrduDLrw7aGxmk3sOu2bLYojGO0gLr8GZrHymRfl95ZoasWro517K1Xy4_5kx-9hs_zWeRnFHPZ_y6AyQA2G4xzmHLgWAKZykIpVeR4Q6gEwXTACc0FkyKnDChXItBU00BpNvZuD3v31nx30Lp0Zzrb9CdThhlhgQqk7ClyoDJr2tZCke5tWWv7mxKcDnbTwW462E2PdvuZm8NMCQD_eM4wwYr9AUIFc9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031398977</pqid></control><display><type>article</type><title>GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block</title><source>IEEE Electronic Library (IEL)</source><creator>Bao, Rina ; Palaniappan, Kannappan ; Zhao, Yunxin ; Seetharaman, Guna</creator><creatorcontrib>Bao, Rina ; Palaniappan, Kannappan ; Zhao, Yunxin ; Seetharaman, Guna</creatorcontrib><description>Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architecture for robust context-dependent 3-D point cloud segmentation. GLSNet++ uniquely combines dual streams of global and local feature manifolds to capture multiscale contextual and structural information, addressing challenges due to highly varying object sizes in urban scenes. To effectively and efficiently refine mixed class labels from cross-scale global and local streams, GLSNet++ incorporates a novel graph neural network (GNN)-based demixing block (GDB) for accurately resolving class membership near voxel boundaries with spatial context-dependent feature fusion. We validate GLSNet++ on the IEEE DFT4 LiDAR dataset, achieving competitive city-scale semantic segmentation that can be extended to more classes, higher-resolution point clouds, and larger geographic regions. GLSNet++ exhibits strong generalization when tested on an independent LiDAR dataset from Columbia, Missouri evaluated using OpenStreetMap (OSM).</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3345747</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D semantic segmentation ; building information modeling (BIM) ; Cartography ; Cloud computing ; Computer vision ; Context ; Datasets ; Demixing ; Digital mapping ; ensemble stacking ; feature fusion ; geographical information system (GIS) ; Graph neural networks ; hyperspectral unmixing ; Image segmentation ; Laser radar ; Lidar ; Machine learning ; Object recognition ; Point cloud compression ; point clouds ; Semantic segmentation ; Semantics ; Streams ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.11610-11624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2047-175e379ebb00de64e407e167f888fd0b127e53a9412d5375d23e24859a2a298a3</cites><orcidid>0000-0003-2367-2590 ; 0000-0001-5511-3692 ; 0000-0003-2663-1380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10430108$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Bao, Rina</creatorcontrib><creatorcontrib>Palaniappan, Kannappan</creatorcontrib><creatorcontrib>Zhao, Yunxin</creatorcontrib><creatorcontrib>Seetharaman, Guna</creatorcontrib><title>GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architecture for robust context-dependent 3-D point cloud segmentation. GLSNet++ uniquely combines dual streams of global and local feature manifolds to capture multiscale contextual and structural information, addressing challenges due to highly varying object sizes in urban scenes. To effectively and efficiently refine mixed class labels from cross-scale global and local streams, GLSNet++ incorporates a novel graph neural network (GNN)-based demixing block (GDB) for accurately resolving class membership near voxel boundaries with spatial context-dependent feature fusion. We validate GLSNet++ on the IEEE DFT4 LiDAR dataset, achieving competitive city-scale semantic segmentation that can be extended to more classes, higher-resolution point clouds, and larger geographic regions. GLSNet++ exhibits strong generalization when tested on an independent LiDAR dataset from Columbia, Missouri evaluated using OpenStreetMap (OSM).</description><subject>3-D semantic segmentation</subject><subject>building information modeling (BIM)</subject><subject>Cartography</subject><subject>Cloud computing</subject><subject>Computer vision</subject><subject>Context</subject><subject>Datasets</subject><subject>Demixing</subject><subject>Digital mapping</subject><subject>ensemble stacking</subject><subject>feature fusion</subject><subject>geographical information system (GIS)</subject><subject>Graph neural networks</subject><subject>hyperspectral unmixing</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Point cloud compression</subject><subject>point clouds</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Streams</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtKw0AUhoMoWKsPILgYcCmpc-1M3NVeohKiGAvuwjQ5KalJpk4moG9vQrtwdf4D37nwed41wRNCcHD_kizjCcWUTRjjQnJ54o2IEMonkqvTITPscyY_z72Ltt1hTAIp5MjrwiiJwd3dPaCwMhtdId3kKDKZrvzEWdA1WoF2nQW06trSNKgwFkXlYvaO3kzZODSvTJejBGrduDLrw7aGxmk3sOu2bLYojGO0gLr8GZrHymRfl95ZoasWro517K1Xy4_5kx-9hs_zWeRnFHPZ_y6AyQA2G4xzmHLgWAKZykIpVeR4Q6gEwXTACc0FkyKnDChXItBU00BpNvZuD3v31nx30Lp0Zzrb9CdThhlhgQqk7ClyoDJr2tZCke5tWWv7mxKcDnbTwW462E2PdvuZm8NMCQD_eM4wwYr9AUIFc9w</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bao, Rina</creator><creator>Palaniappan, Kannappan</creator><creator>Zhao, Yunxin</creator><creator>Seetharaman, Guna</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2367-2590</orcidid><orcidid>https://orcid.org/0000-0001-5511-3692</orcidid><orcidid>https://orcid.org/0000-0003-2663-1380</orcidid></search><sort><creationdate>20240401</creationdate><title>GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block</title><author>Bao, Rina ; Palaniappan, Kannappan ; Zhao, Yunxin ; Seetharaman, Guna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2047-175e379ebb00de64e407e167f888fd0b127e53a9412d5375d23e24859a2a298a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D semantic segmentation</topic><topic>building information modeling (BIM)</topic><topic>Cartography</topic><topic>Cloud computing</topic><topic>Computer vision</topic><topic>Context</topic><topic>Datasets</topic><topic>Demixing</topic><topic>Digital mapping</topic><topic>ensemble stacking</topic><topic>feature fusion</topic><topic>geographical information system (GIS)</topic><topic>Graph neural networks</topic><topic>hyperspectral unmixing</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Point cloud compression</topic><topic>point clouds</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Streams</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Rina</creatorcontrib><creatorcontrib>Palaniappan, Kannappan</creatorcontrib><creatorcontrib>Zhao, Yunxin</creatorcontrib><creatorcontrib>Seetharaman, Guna</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Rina</au><au>Palaniappan, Kannappan</au><au>Zhao, Yunxin</au><au>Seetharaman, Guna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>11610</spage><epage>11624</epage><pages>11610-11624</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architecture for robust context-dependent 3-D point cloud segmentation. GLSNet++ uniquely combines dual streams of global and local feature manifolds to capture multiscale contextual and structural information, addressing challenges due to highly varying object sizes in urban scenes. To effectively and efficiently refine mixed class labels from cross-scale global and local streams, GLSNet++ incorporates a novel graph neural network (GNN)-based demixing block (GDB) for accurately resolving class membership near voxel boundaries with spatial context-dependent feature fusion. We validate GLSNet++ on the IEEE DFT4 LiDAR dataset, achieving competitive city-scale semantic segmentation that can be extended to more classes, higher-resolution point clouds, and larger geographic regions. GLSNet++ exhibits strong generalization when tested on an independent LiDAR dataset from Columbia, Missouri evaluated using OpenStreetMap (OSM).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3345747</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2367-2590</orcidid><orcidid>https://orcid.org/0000-0001-5511-3692</orcidid><orcidid>https://orcid.org/0000-0003-2663-1380</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-04, Vol.24 (7), p.11610-11624 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10430108 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D semantic segmentation building information modeling (BIM) Cartography Cloud computing Computer vision Context Datasets Demixing Digital mapping ensemble stacking feature fusion geographical information system (GIS) Graph neural networks hyperspectral unmixing Image segmentation Laser radar Lidar Machine learning Object recognition Point cloud compression point clouds Semantic segmentation Semantics Streams Three dimensional models Three-dimensional displays |
title | GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GLSNet++:%20Global%20and%20Local-Stream%20Feature%20Fusion%20for%20LiDAR%20Point%20Cloud%20Semantic%20Segmentation%20Using%20GNN%20Demixing%20Block&rft.jtitle=IEEE%20sensors%20journal&rft.au=Bao,%20Rina&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=11610&rft.epage=11624&rft.pages=11610-11624&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3345747&rft_dat=%3Cproquest_ieee_%3E3031398977%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031398977&rft_id=info:pmid/&rft_ieee_id=10430108&rfr_iscdi=true |