GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block

Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-04, Vol.24 (7), p.11610-11624
Hauptverfasser: Bao, Rina, Palaniappan, Kannappan, Zhao, Yunxin, Seetharaman, Guna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11624
container_issue 7
container_start_page 11610
container_title IEEE sensors journal
container_volume 24
creator Bao, Rina
Palaniappan, Kannappan
Zhao, Yunxin
Seetharaman, Guna
description Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architecture for robust context-dependent 3-D point cloud segmentation. GLSNet++ uniquely combines dual streams of global and local feature manifolds to capture multiscale contextual and structural information, addressing challenges due to highly varying object sizes in urban scenes. To effectively and efficiently refine mixed class labels from cross-scale global and local streams, GLSNet++ incorporates a novel graph neural network (GNN)-based demixing block (GDB) for accurately resolving class membership near voxel boundaries with spatial context-dependent feature fusion. We validate GLSNet++ on the IEEE DFT4 LiDAR dataset, achieving competitive city-scale semantic segmentation that can be extended to more classes, higher-resolution point clouds, and larger geographic regions. GLSNet++ exhibits strong generalization when tested on an independent LiDAR dataset from Columbia, Missouri evaluated using OpenStreetMap (OSM).
doi_str_mv 10.1109/JSEN.2023.3345747
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10430108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10430108</ieee_id><sourcerecordid>3031398977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2047-175e379ebb00de64e407e167f888fd0b127e53a9412d5375d23e24859a2a298a3</originalsourceid><addsrcrecordid>eNpNkMtKw0AUhoMoWKsPILgYcCmpc-1M3NVeohKiGAvuwjQ5KalJpk4moG9vQrtwdf4D37nwed41wRNCcHD_kizjCcWUTRjjQnJ54o2IEMonkqvTITPscyY_z72Ltt1hTAIp5MjrwiiJwd3dPaCwMhtdId3kKDKZrvzEWdA1WoF2nQW06trSNKgwFkXlYvaO3kzZODSvTJejBGrduDLrw7aGxmk3sOu2bLYojGO0gLr8GZrHymRfl95ZoasWro517K1Xy4_5kx-9hs_zWeRnFHPZ_y6AyQA2G4xzmHLgWAKZykIpVeR4Q6gEwXTACc0FkyKnDChXItBU00BpNvZuD3v31nx30Lp0Zzrb9CdThhlhgQqk7ClyoDJr2tZCke5tWWv7mxKcDnbTwW462E2PdvuZm8NMCQD_eM4wwYr9AUIFc9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031398977</pqid></control><display><type>article</type><title>GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block</title><source>IEEE Electronic Library (IEL)</source><creator>Bao, Rina ; Palaniappan, Kannappan ; Zhao, Yunxin ; Seetharaman, Guna</creator><creatorcontrib>Bao, Rina ; Palaniappan, Kannappan ; Zhao, Yunxin ; Seetharaman, Guna</creatorcontrib><description>Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architecture for robust context-dependent 3-D point cloud segmentation. GLSNet++ uniquely combines dual streams of global and local feature manifolds to capture multiscale contextual and structural information, addressing challenges due to highly varying object sizes in urban scenes. To effectively and efficiently refine mixed class labels from cross-scale global and local streams, GLSNet++ incorporates a novel graph neural network (GNN)-based demixing block (GDB) for accurately resolving class membership near voxel boundaries with spatial context-dependent feature fusion. We validate GLSNet++ on the IEEE DFT4 LiDAR dataset, achieving competitive city-scale semantic segmentation that can be extended to more classes, higher-resolution point clouds, and larger geographic regions. GLSNet++ exhibits strong generalization when tested on an independent LiDAR dataset from Columbia, Missouri evaluated using OpenStreetMap (OSM).</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3345747</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D semantic segmentation ; building information modeling (BIM) ; Cartography ; Cloud computing ; Computer vision ; Context ; Datasets ; Demixing ; Digital mapping ; ensemble stacking ; feature fusion ; geographical information system (GIS) ; Graph neural networks ; hyperspectral unmixing ; Image segmentation ; Laser radar ; Lidar ; Machine learning ; Object recognition ; Point cloud compression ; point clouds ; Semantic segmentation ; Semantics ; Streams ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.11610-11624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2047-175e379ebb00de64e407e167f888fd0b127e53a9412d5375d23e24859a2a298a3</cites><orcidid>0000-0003-2367-2590 ; 0000-0001-5511-3692 ; 0000-0003-2663-1380</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10430108$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Bao, Rina</creatorcontrib><creatorcontrib>Palaniappan, Kannappan</creatorcontrib><creatorcontrib>Zhao, Yunxin</creatorcontrib><creatorcontrib>Seetharaman, Guna</creatorcontrib><title>GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architecture for robust context-dependent 3-D point cloud segmentation. GLSNet++ uniquely combines dual streams of global and local feature manifolds to capture multiscale contextual and structural information, addressing challenges due to highly varying object sizes in urban scenes. To effectively and efficiently refine mixed class labels from cross-scale global and local streams, GLSNet++ incorporates a novel graph neural network (GNN)-based demixing block (GDB) for accurately resolving class membership near voxel boundaries with spatial context-dependent feature fusion. We validate GLSNet++ on the IEEE DFT4 LiDAR dataset, achieving competitive city-scale semantic segmentation that can be extended to more classes, higher-resolution point clouds, and larger geographic regions. GLSNet++ exhibits strong generalization when tested on an independent LiDAR dataset from Columbia, Missouri evaluated using OpenStreetMap (OSM).</description><subject>3-D semantic segmentation</subject><subject>building information modeling (BIM)</subject><subject>Cartography</subject><subject>Cloud computing</subject><subject>Computer vision</subject><subject>Context</subject><subject>Datasets</subject><subject>Demixing</subject><subject>Digital mapping</subject><subject>ensemble stacking</subject><subject>feature fusion</subject><subject>geographical information system (GIS)</subject><subject>Graph neural networks</subject><subject>hyperspectral unmixing</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Object recognition</subject><subject>Point cloud compression</subject><subject>point clouds</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Streams</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMtKw0AUhoMoWKsPILgYcCmpc-1M3NVeohKiGAvuwjQ5KalJpk4moG9vQrtwdf4D37nwed41wRNCcHD_kizjCcWUTRjjQnJ54o2IEMonkqvTITPscyY_z72Ltt1hTAIp5MjrwiiJwd3dPaCwMhtdId3kKDKZrvzEWdA1WoF2nQW06trSNKgwFkXlYvaO3kzZODSvTJejBGrduDLrw7aGxmk3sOu2bLYojGO0gLr8GZrHymRfl95ZoasWro517K1Xy4_5kx-9hs_zWeRnFHPZ_y6AyQA2G4xzmHLgWAKZykIpVeR4Q6gEwXTACc0FkyKnDChXItBU00BpNvZuD3v31nx30Lp0Zzrb9CdThhlhgQqk7ClyoDJr2tZCke5tWWv7mxKcDnbTwW462E2PdvuZm8NMCQD_eM4wwYr9AUIFc9w</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bao, Rina</creator><creator>Palaniappan, Kannappan</creator><creator>Zhao, Yunxin</creator><creator>Seetharaman, Guna</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2367-2590</orcidid><orcidid>https://orcid.org/0000-0001-5511-3692</orcidid><orcidid>https://orcid.org/0000-0003-2663-1380</orcidid></search><sort><creationdate>20240401</creationdate><title>GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block</title><author>Bao, Rina ; Palaniappan, Kannappan ; Zhao, Yunxin ; Seetharaman, Guna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2047-175e379ebb00de64e407e167f888fd0b127e53a9412d5375d23e24859a2a298a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D semantic segmentation</topic><topic>building information modeling (BIM)</topic><topic>Cartography</topic><topic>Cloud computing</topic><topic>Computer vision</topic><topic>Context</topic><topic>Datasets</topic><topic>Demixing</topic><topic>Digital mapping</topic><topic>ensemble stacking</topic><topic>feature fusion</topic><topic>geographical information system (GIS)</topic><topic>Graph neural networks</topic><topic>hyperspectral unmixing</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Object recognition</topic><topic>Point cloud compression</topic><topic>point clouds</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Streams</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Rina</creatorcontrib><creatorcontrib>Palaniappan, Kannappan</creatorcontrib><creatorcontrib>Zhao, Yunxin</creatorcontrib><creatorcontrib>Seetharaman, Guna</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Rina</au><au>Palaniappan, Kannappan</au><au>Zhao, Yunxin</au><au>Seetharaman, Guna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>11610</spage><epage>11624</epage><pages>11610-11624</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Semantic point cloud segmentation is a critical task in 3-D computer vision, offering valuable contextual information for navigation, cartography, landmarks, object recognition, and building modeling. We developed global and local stream deep network (GLSNet++), an innovative deep learning architecture for robust context-dependent 3-D point cloud segmentation. GLSNet++ uniquely combines dual streams of global and local feature manifolds to capture multiscale contextual and structural information, addressing challenges due to highly varying object sizes in urban scenes. To effectively and efficiently refine mixed class labels from cross-scale global and local streams, GLSNet++ incorporates a novel graph neural network (GNN)-based demixing block (GDB) for accurately resolving class membership near voxel boundaries with spatial context-dependent feature fusion. We validate GLSNet++ on the IEEE DFT4 LiDAR dataset, achieving competitive city-scale semantic segmentation that can be extended to more classes, higher-resolution point clouds, and larger geographic regions. GLSNet++ exhibits strong generalization when tested on an independent LiDAR dataset from Columbia, Missouri evaluated using OpenStreetMap (OSM).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3345747</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2367-2590</orcidid><orcidid>https://orcid.org/0000-0001-5511-3692</orcidid><orcidid>https://orcid.org/0000-0003-2663-1380</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-04, Vol.24 (7), p.11610-11624
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10430108
source IEEE Electronic Library (IEL)
subjects 3-D semantic segmentation
building information modeling (BIM)
Cartography
Cloud computing
Computer vision
Context
Datasets
Demixing
Digital mapping
ensemble stacking
feature fusion
geographical information system (GIS)
Graph neural networks
hyperspectral unmixing
Image segmentation
Laser radar
Lidar
Machine learning
Object recognition
Point cloud compression
point clouds
Semantic segmentation
Semantics
Streams
Three dimensional models
Three-dimensional displays
title GLSNet++: Global and Local-Stream Feature Fusion for LiDAR Point Cloud Semantic Segmentation Using GNN Demixing Block
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GLSNet++:%20Global%20and%20Local-Stream%20Feature%20Fusion%20for%20LiDAR%20Point%20Cloud%20Semantic%20Segmentation%20Using%20GNN%20Demixing%20Block&rft.jtitle=IEEE%20sensors%20journal&rft.au=Bao,%20Rina&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=11610&rft.epage=11624&rft.pages=11610-11624&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3345747&rft_dat=%3Cproquest_ieee_%3E3031398977%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031398977&rft_id=info:pmid/&rft_ieee_id=10430108&rfr_iscdi=true