The use of Kohonen self-organizing maps in process monitoring
Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically....
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 vol.3 |
---|---|
container_issue | |
container_start_page | 2 |
container_title | |
container_volume | 3 |
creator | Vermasvuori, M. Enden, P. Haavisto, S. Jamsa-Jounela, S.-L. |
description | Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically. In this paper a fault diagnosis system is described and some application results from the Outokumpu Harjavalta smelter are discussed. The system monitors process states using neural networks (Kohonen self-organizing maps, SOM) in conjunction with heuristic rules, which are also used to detect equipment malfunctions. |
doi_str_mv | 10.1109/IS.2002.1042576 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1042576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1042576</ieee_id><sourcerecordid>1042576</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5363765daaa314f67faa1def77c5238c36810962a64868fb8ce341be263d5e463</originalsourceid><addsrcrecordid>eNotjztPwzAUhS0hpELpzMDiP5Bg-_rVgQFVPCoqMTR7dZtct0aNHcVlgF9PJHqWM3zS0XcYu5eillIsH9fbWgmhaim0Ms5esVvhvAAnQfsZW5TyJaZoo0GZG_bUHIl_F-I58I98zIkSL3QKVR4PmOJvTAfe41B4THwYc0ul8D6neM7jhO7YdcBTocWl56x5fWlW79Xm8229et5UcSnOlQELzpoOEUHqYF1AlB0F51qjwLdg_SRuFVrtrQ973xJouSdloTOkLczZw_9sJKLdMMYex5_d5SD8AeTiRVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The use of Kohonen self-organizing maps in process monitoring</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vermasvuori, M. ; Enden, P. ; Haavisto, S. ; Jamsa-Jounela, S.-L.</creator><creatorcontrib>Vermasvuori, M. ; Enden, P. ; Haavisto, S. ; Jamsa-Jounela, S.-L.</creatorcontrib><description>Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically. In this paper a fault diagnosis system is described and some application results from the Outokumpu Harjavalta smelter are discussed. The system monitors process states using neural networks (Kohonen self-organizing maps, SOM) in conjunction with heuristic rules, which are also used to detect equipment malfunctions.</description><identifier>ISBN: 0780371348</identifier><identifier>ISBN: 9780780371347</identifier><identifier>DOI: 10.1109/IS.2002.1042576</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computerized monitoring ; Copper ; Fault detection ; Fault diagnosis ; Feeds ; Neural networks ; Production ; Self organizing feature maps ; Smelting</subject><ispartof>Proceedings First International IEEE Symposium Intelligent Systems, 2002, Vol.3, p.2-7 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1042576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1042576$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vermasvuori, M.</creatorcontrib><creatorcontrib>Enden, P.</creatorcontrib><creatorcontrib>Haavisto, S.</creatorcontrib><creatorcontrib>Jamsa-Jounela, S.-L.</creatorcontrib><title>The use of Kohonen self-organizing maps in process monitoring</title><title>Proceedings First International IEEE Symposium Intelligent Systems</title><addtitle>IS</addtitle><description>Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically. In this paper a fault diagnosis system is described and some application results from the Outokumpu Harjavalta smelter are discussed. The system monitors process states using neural networks (Kohonen self-organizing maps, SOM) in conjunction with heuristic rules, which are also used to detect equipment malfunctions.</description><subject>Application software</subject><subject>Computerized monitoring</subject><subject>Copper</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feeds</subject><subject>Neural networks</subject><subject>Production</subject><subject>Self organizing feature maps</subject><subject>Smelting</subject><isbn>0780371348</isbn><isbn>9780780371347</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjztPwzAUhS0hpELpzMDiP5Bg-_rVgQFVPCoqMTR7dZtct0aNHcVlgF9PJHqWM3zS0XcYu5eillIsH9fbWgmhaim0Ms5esVvhvAAnQfsZW5TyJaZoo0GZG_bUHIl_F-I58I98zIkSL3QKVR4PmOJvTAfe41B4THwYc0ul8D6neM7jhO7YdcBTocWl56x5fWlW79Xm8229et5UcSnOlQELzpoOEUHqYF1AlB0F51qjwLdg_SRuFVrtrQ973xJouSdloTOkLczZw_9sJKLdMMYex5_d5SD8AeTiRVA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Vermasvuori, M.</creator><creator>Enden, P.</creator><creator>Haavisto, S.</creator><creator>Jamsa-Jounela, S.-L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>The use of Kohonen self-organizing maps in process monitoring</title><author>Vermasvuori, M. ; Enden, P. ; Haavisto, S. ; Jamsa-Jounela, S.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5363765daaa314f67faa1def77c5238c36810962a64868fb8ce341be263d5e463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Application software</topic><topic>Computerized monitoring</topic><topic>Copper</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feeds</topic><topic>Neural networks</topic><topic>Production</topic><topic>Self organizing feature maps</topic><topic>Smelting</topic><toplevel>online_resources</toplevel><creatorcontrib>Vermasvuori, M.</creatorcontrib><creatorcontrib>Enden, P.</creatorcontrib><creatorcontrib>Haavisto, S.</creatorcontrib><creatorcontrib>Jamsa-Jounela, S.-L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vermasvuori, M.</au><au>Enden, P.</au><au>Haavisto, S.</au><au>Jamsa-Jounela, S.-L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The use of Kohonen self-organizing maps in process monitoring</atitle><btitle>Proceedings First International IEEE Symposium Intelligent Systems</btitle><stitle>IS</stitle><date>2002</date><risdate>2002</risdate><volume>3</volume><spage>2</spage><epage>7 vol.3</epage><pages>2-7 vol.3</pages><isbn>0780371348</isbn><isbn>9780780371347</isbn><abstract>Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically. In this paper a fault diagnosis system is described and some application results from the Outokumpu Harjavalta smelter are discussed. The system monitors process states using neural networks (Kohonen self-organizing maps, SOM) in conjunction with heuristic rules, which are also used to detect equipment malfunctions.</abstract><pub>IEEE</pub><doi>10.1109/IS.2002.1042576</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780371348 |
ispartof | Proceedings First International IEEE Symposium Intelligent Systems, 2002, Vol.3, p.2-7 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1042576 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Application software Computerized monitoring Copper Fault detection Fault diagnosis Feeds Neural networks Production Self organizing feature maps Smelting |
title | The use of Kohonen self-organizing maps in process monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20use%20of%20Kohonen%20self-organizing%20maps%20in%20process%20monitoring&rft.btitle=Proceedings%20First%20International%20IEEE%20Symposium%20Intelligent%20Systems&rft.au=Vermasvuori,%20M.&rft.date=2002&rft.volume=3&rft.spage=2&rft.epage=7%20vol.3&rft.pages=2-7%20vol.3&rft.isbn=0780371348&rft.isbn_list=9780780371347&rft_id=info:doi/10.1109/IS.2002.1042576&rft_dat=%3Cieee_6IE%3E1042576%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1042576&rfr_iscdi=true |