The use of Kohonen self-organizing maps in process monitoring

Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vermasvuori, M., Enden, P., Haavisto, S., Jamsa-Jounela, S.-L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7 vol.3
container_issue
container_start_page 2
container_title
container_volume 3
creator Vermasvuori, M.
Enden, P.
Haavisto, S.
Jamsa-Jounela, S.-L.
description Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically. In this paper a fault diagnosis system is described and some application results from the Outokumpu Harjavalta smelter are discussed. The system monitors process states using neural networks (Kohonen self-organizing maps, SOM) in conjunction with heuristic rules, which are also used to detect equipment malfunctions.
doi_str_mv 10.1109/IS.2002.1042576
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1042576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1042576</ieee_id><sourcerecordid>1042576</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5363765daaa314f67faa1def77c5238c36810962a64868fb8ce341be263d5e463</originalsourceid><addsrcrecordid>eNotjztPwzAUhS0hpELpzMDiP5Bg-_rVgQFVPCoqMTR7dZtct0aNHcVlgF9PJHqWM3zS0XcYu5eillIsH9fbWgmhaim0Ms5esVvhvAAnQfsZW5TyJaZoo0GZG_bUHIl_F-I58I98zIkSL3QKVR4PmOJvTAfe41B4THwYc0ul8D6neM7jhO7YdcBTocWl56x5fWlW79Xm8229et5UcSnOlQELzpoOEUHqYF1AlB0F51qjwLdg_SRuFVrtrQ973xJouSdloTOkLczZw_9sJKLdMMYex5_d5SD8AeTiRVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The use of Kohonen self-organizing maps in process monitoring</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vermasvuori, M. ; Enden, P. ; Haavisto, S. ; Jamsa-Jounela, S.-L.</creator><creatorcontrib>Vermasvuori, M. ; Enden, P. ; Haavisto, S. ; Jamsa-Jounela, S.-L.</creatorcontrib><description>Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically. In this paper a fault diagnosis system is described and some application results from the Outokumpu Harjavalta smelter are discussed. The system monitors process states using neural networks (Kohonen self-organizing maps, SOM) in conjunction with heuristic rules, which are also used to detect equipment malfunctions.</description><identifier>ISBN: 0780371348</identifier><identifier>ISBN: 9780780371347</identifier><identifier>DOI: 10.1109/IS.2002.1042576</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computerized monitoring ; Copper ; Fault detection ; Fault diagnosis ; Feeds ; Neural networks ; Production ; Self organizing feature maps ; Smelting</subject><ispartof>Proceedings First International IEEE Symposium Intelligent Systems, 2002, Vol.3, p.2-7 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1042576$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1042576$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vermasvuori, M.</creatorcontrib><creatorcontrib>Enden, P.</creatorcontrib><creatorcontrib>Haavisto, S.</creatorcontrib><creatorcontrib>Jamsa-Jounela, S.-L.</creatorcontrib><title>The use of Kohonen self-organizing maps in process monitoring</title><title>Proceedings First International IEEE Symposium Intelligent Systems</title><addtitle>IS</addtitle><description>Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically. In this paper a fault diagnosis system is described and some application results from the Outokumpu Harjavalta smelter are discussed. The system monitors process states using neural networks (Kohonen self-organizing maps, SOM) in conjunction with heuristic rules, which are also used to detect equipment malfunctions.</description><subject>Application software</subject><subject>Computerized monitoring</subject><subject>Copper</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feeds</subject><subject>Neural networks</subject><subject>Production</subject><subject>Self organizing feature maps</subject><subject>Smelting</subject><isbn>0780371348</isbn><isbn>9780780371347</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjztPwzAUhS0hpELpzMDiP5Bg-_rVgQFVPCoqMTR7dZtct0aNHcVlgF9PJHqWM3zS0XcYu5eillIsH9fbWgmhaim0Ms5esVvhvAAnQfsZW5TyJaZoo0GZG_bUHIl_F-I58I98zIkSL3QKVR4PmOJvTAfe41B4THwYc0ul8D6neM7jhO7YdcBTocWl56x5fWlW79Xm8229et5UcSnOlQELzpoOEUHqYF1AlB0F51qjwLdg_SRuFVrtrQ973xJouSdloTOkLczZw_9sJKLdMMYex5_d5SD8AeTiRVA</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Vermasvuori, M.</creator><creator>Enden, P.</creator><creator>Haavisto, S.</creator><creator>Jamsa-Jounela, S.-L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>The use of Kohonen self-organizing maps in process monitoring</title><author>Vermasvuori, M. ; Enden, P. ; Haavisto, S. ; Jamsa-Jounela, S.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5363765daaa314f67faa1def77c5238c36810962a64868fb8ce341be263d5e463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Application software</topic><topic>Computerized monitoring</topic><topic>Copper</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feeds</topic><topic>Neural networks</topic><topic>Production</topic><topic>Self organizing feature maps</topic><topic>Smelting</topic><toplevel>online_resources</toplevel><creatorcontrib>Vermasvuori, M.</creatorcontrib><creatorcontrib>Enden, P.</creatorcontrib><creatorcontrib>Haavisto, S.</creatorcontrib><creatorcontrib>Jamsa-Jounela, S.-L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vermasvuori, M.</au><au>Enden, P.</au><au>Haavisto, S.</au><au>Jamsa-Jounela, S.-L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The use of Kohonen self-organizing maps in process monitoring</atitle><btitle>Proceedings First International IEEE Symposium Intelligent Systems</btitle><stitle>IS</stitle><date>2002</date><risdate>2002</risdate><volume>3</volume><spage>2</spage><epage>7 vol.3</epage><pages>2-7 vol.3</pages><isbn>0780371348</isbn><isbn>9780780371347</isbn><abstract>Process monitoring and fault diagnosis have been studied widely in recent years, and the number of industrial applications with encouraging results has grown rapidly. In the case of complex processes a computer aided monitoring enhances operators' possibilities to run the process economically. In this paper a fault diagnosis system is described and some application results from the Outokumpu Harjavalta smelter are discussed. The system monitors process states using neural networks (Kohonen self-organizing maps, SOM) in conjunction with heuristic rules, which are also used to detect equipment malfunctions.</abstract><pub>IEEE</pub><doi>10.1109/IS.2002.1042576</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780371348
ispartof Proceedings First International IEEE Symposium Intelligent Systems, 2002, Vol.3, p.2-7 vol.3
issn
language eng
recordid cdi_ieee_primary_1042576
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computerized monitoring
Copper
Fault detection
Fault diagnosis
Feeds
Neural networks
Production
Self organizing feature maps
Smelting
title The use of Kohonen self-organizing maps in process monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20use%20of%20Kohonen%20self-organizing%20maps%20in%20process%20monitoring&rft.btitle=Proceedings%20First%20International%20IEEE%20Symposium%20Intelligent%20Systems&rft.au=Vermasvuori,%20M.&rft.date=2002&rft.volume=3&rft.spage=2&rft.epage=7%20vol.3&rft.pages=2-7%20vol.3&rft.isbn=0780371348&rft.isbn_list=9780780371347&rft_id=info:doi/10.1109/IS.2002.1042576&rft_dat=%3Cieee_6IE%3E1042576%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1042576&rfr_iscdi=true