A Vehicle Matching Algorithm by Maximizing Travel Time Probability Based on Automatic License Plate Recognition Data

Vehicle re-identification aims to match and identify the same vehicle crossing multiple surveillance cameras and obtain traffic information such as travel time. The Automatic License Plate Recognition (ALPR) data are widely employed in urban surveillance. However, vehicle re-identification based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-08, Vol.25 (8), p.9103-9114
Hauptverfasser: He, Chunguang, Wang, Dianhai, Cai, Zhengyi, Zeng, Jiaqi, Fu, Fengjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9114
container_issue 8
container_start_page 9103
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator He, Chunguang
Wang, Dianhai
Cai, Zhengyi
Zeng, Jiaqi
Fu, Fengjie
description Vehicle re-identification aims to match and identify the same vehicle crossing multiple surveillance cameras and obtain traffic information such as travel time. The Automatic License Plate Recognition (ALPR) data are widely employed in urban surveillance. However, vehicle re-identification based on ALPR data is challenging due to license plate recognition errors and unrecognized issues. This paper proposes a vehicle matching algorithm designed to maximize the travel time probability using ALPR data, while accounting for recognition errors and unrecognized issues. The proposed algorithm consists of several modules, including the estimation of travel time distribution, computation of travel time probability, calculation of travel time confidence intervals and matching time window size, restricted fuzzy matching, and vehicle matching optimization. To evaluate the effectiveness of the proposed algorithm across varying lighting and weather conditions, ALPR data was collected from a survey road in four scenarios: sunny day, sunny night, rainy day, and rainy night. The results indicate that when compared to a sunny day scenario, severe lighting and adverse weather conditions lead to decreased matching accuracy and increased matching accuracy errors for all methods evaluated. However, our proposed model outperforms benchmark algorithms in both scenarios, demonstrating its superior performance.
doi_str_mv 10.1109/TITS.2024.3358625
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10423908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10423908</ieee_id><sourcerecordid>10_1109_TITS_2024_3358625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-6dc1883973b6ff1750fcf64740e4e5c17c0668fb1785d89e4e326a8199563fca3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpnjh2nGUoFCoVgSCwjRx33BrlgWKDKF9PonbBaq6O7p3FIeQS2AyAZdfFsnidxSxOZpwLJWNxRCYghIoYA3k85jiJMibYKTnz_mOgiQCYkJDTd9w6UyN91MFsXbuheb3pehe2Da12A_1xjfsdedHrb6xp4Rqkz31X6crVLuzojfa4pl1L86_QNTo4Q1fOYOuHWq0D0hc03aZ1wQ2dWx30OTmxuvZ4cbhT8ra4K-YP0erpfjnPV5GJQYVIrg0oxbOUV9JaSAWzxsokTRgmKAykhkmpbAWpEmuVDZDHUivIMiG5NZpPCez_mr7zvkdbfvau0f2uBFaO2spRWzlqKw_ahs3VfuMQ8V8_iXnGFP8DJxFqHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Vehicle Matching Algorithm by Maximizing Travel Time Probability Based on Automatic License Plate Recognition Data</title><source>IEEE Electronic Library (IEL)</source><creator>He, Chunguang ; Wang, Dianhai ; Cai, Zhengyi ; Zeng, Jiaqi ; Fu, Fengjie</creator><creatorcontrib>He, Chunguang ; Wang, Dianhai ; Cai, Zhengyi ; Zeng, Jiaqi ; Fu, Fengjie</creatorcontrib><description>Vehicle re-identification aims to match and identify the same vehicle crossing multiple surveillance cameras and obtain traffic information such as travel time. The Automatic License Plate Recognition (ALPR) data are widely employed in urban surveillance. However, vehicle re-identification based on ALPR data is challenging due to license plate recognition errors and unrecognized issues. This paper proposes a vehicle matching algorithm designed to maximize the travel time probability using ALPR data, while accounting for recognition errors and unrecognized issues. The proposed algorithm consists of several modules, including the estimation of travel time distribution, computation of travel time probability, calculation of travel time confidence intervals and matching time window size, restricted fuzzy matching, and vehicle matching optimization. To evaluate the effectiveness of the proposed algorithm across varying lighting and weather conditions, ALPR data was collected from a survey road in four scenarios: sunny day, sunny night, rainy day, and rainy night. The results indicate that when compared to a sunny day scenario, severe lighting and adverse weather conditions lead to decreased matching accuracy and increased matching accuracy errors for all methods evaluated. However, our proposed model outperforms benchmark algorithms in both scenarios, demonstrating its superior performance.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2024.3358625</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>IEEE</publisher><subject>automatic license plate recognition (ALPR) data ; Data models ; Detectors ; Estimation ; License plate recognition ; Probability ; Roads ; Traffic control ; travel time distribution ; travel time probability ; vehicle matching algorithm ; Vehicle reidentification</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.9103-9114</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-6dc1883973b6ff1750fcf64740e4e5c17c0668fb1785d89e4e326a8199563fca3</cites><orcidid>0000-0001-6066-2274 ; 0000-0001-9178-9809 ; 0000-0002-0195-9139 ; 0000-0001-5120-8440 ; 0000-0002-6967-5394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10423908$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10423908$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Chunguang</creatorcontrib><creatorcontrib>Wang, Dianhai</creatorcontrib><creatorcontrib>Cai, Zhengyi</creatorcontrib><creatorcontrib>Zeng, Jiaqi</creatorcontrib><creatorcontrib>Fu, Fengjie</creatorcontrib><title>A Vehicle Matching Algorithm by Maximizing Travel Time Probability Based on Automatic License Plate Recognition Data</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Vehicle re-identification aims to match and identify the same vehicle crossing multiple surveillance cameras and obtain traffic information such as travel time. The Automatic License Plate Recognition (ALPR) data are widely employed in urban surveillance. However, vehicle re-identification based on ALPR data is challenging due to license plate recognition errors and unrecognized issues. This paper proposes a vehicle matching algorithm designed to maximize the travel time probability using ALPR data, while accounting for recognition errors and unrecognized issues. The proposed algorithm consists of several modules, including the estimation of travel time distribution, computation of travel time probability, calculation of travel time confidence intervals and matching time window size, restricted fuzzy matching, and vehicle matching optimization. To evaluate the effectiveness of the proposed algorithm across varying lighting and weather conditions, ALPR data was collected from a survey road in four scenarios: sunny day, sunny night, rainy day, and rainy night. The results indicate that when compared to a sunny day scenario, severe lighting and adverse weather conditions lead to decreased matching accuracy and increased matching accuracy errors for all methods evaluated. However, our proposed model outperforms benchmark algorithms in both scenarios, demonstrating its superior performance.</description><subject>automatic license plate recognition (ALPR) data</subject><subject>Data models</subject><subject>Detectors</subject><subject>Estimation</subject><subject>License plate recognition</subject><subject>Probability</subject><subject>Roads</subject><subject>Traffic control</subject><subject>travel time distribution</subject><subject>travel time probability</subject><subject>vehicle matching algorithm</subject><subject>Vehicle reidentification</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgs_AMpnjh2nGUoFCoVgSCwjRx33BrlgWKDKF9PonbBaq6O7p3FIeQS2AyAZdfFsnidxSxOZpwLJWNxRCYghIoYA3k85jiJMibYKTnz_mOgiQCYkJDTd9w6UyN91MFsXbuheb3pehe2Da12A_1xjfsdedHrb6xp4Rqkz31X6crVLuzojfa4pl1L86_QNTo4Q1fOYOuHWq0D0hc03aZ1wQ2dWx30OTmxuvZ4cbhT8ra4K-YP0erpfjnPV5GJQYVIrg0oxbOUV9JaSAWzxsokTRgmKAykhkmpbAWpEmuVDZDHUivIMiG5NZpPCez_mr7zvkdbfvau0f2uBFaO2spRWzlqKw_ahs3VfuMQ8V8_iXnGFP8DJxFqHA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>He, Chunguang</creator><creator>Wang, Dianhai</creator><creator>Cai, Zhengyi</creator><creator>Zeng, Jiaqi</creator><creator>Fu, Fengjie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6066-2274</orcidid><orcidid>https://orcid.org/0000-0001-9178-9809</orcidid><orcidid>https://orcid.org/0000-0002-0195-9139</orcidid><orcidid>https://orcid.org/0000-0001-5120-8440</orcidid><orcidid>https://orcid.org/0000-0002-6967-5394</orcidid></search><sort><creationdate>20240801</creationdate><title>A Vehicle Matching Algorithm by Maximizing Travel Time Probability Based on Automatic License Plate Recognition Data</title><author>He, Chunguang ; Wang, Dianhai ; Cai, Zhengyi ; Zeng, Jiaqi ; Fu, Fengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-6dc1883973b6ff1750fcf64740e4e5c17c0668fb1785d89e4e326a8199563fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>automatic license plate recognition (ALPR) data</topic><topic>Data models</topic><topic>Detectors</topic><topic>Estimation</topic><topic>License plate recognition</topic><topic>Probability</topic><topic>Roads</topic><topic>Traffic control</topic><topic>travel time distribution</topic><topic>travel time probability</topic><topic>vehicle matching algorithm</topic><topic>Vehicle reidentification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Chunguang</creatorcontrib><creatorcontrib>Wang, Dianhai</creatorcontrib><creatorcontrib>Cai, Zhengyi</creatorcontrib><creatorcontrib>Zeng, Jiaqi</creatorcontrib><creatorcontrib>Fu, Fengjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Chunguang</au><au>Wang, Dianhai</au><au>Cai, Zhengyi</au><au>Zeng, Jiaqi</au><au>Fu, Fengjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Vehicle Matching Algorithm by Maximizing Travel Time Probability Based on Automatic License Plate Recognition Data</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>25</volume><issue>8</issue><spage>9103</spage><epage>9114</epage><pages>9103-9114</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Vehicle re-identification aims to match and identify the same vehicle crossing multiple surveillance cameras and obtain traffic information such as travel time. The Automatic License Plate Recognition (ALPR) data are widely employed in urban surveillance. However, vehicle re-identification based on ALPR data is challenging due to license plate recognition errors and unrecognized issues. This paper proposes a vehicle matching algorithm designed to maximize the travel time probability using ALPR data, while accounting for recognition errors and unrecognized issues. The proposed algorithm consists of several modules, including the estimation of travel time distribution, computation of travel time probability, calculation of travel time confidence intervals and matching time window size, restricted fuzzy matching, and vehicle matching optimization. To evaluate the effectiveness of the proposed algorithm across varying lighting and weather conditions, ALPR data was collected from a survey road in four scenarios: sunny day, sunny night, rainy day, and rainy night. The results indicate that when compared to a sunny day scenario, severe lighting and adverse weather conditions lead to decreased matching accuracy and increased matching accuracy errors for all methods evaluated. However, our proposed model outperforms benchmark algorithms in both scenarios, demonstrating its superior performance.</abstract><pub>IEEE</pub><doi>10.1109/TITS.2024.3358625</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6066-2274</orcidid><orcidid>https://orcid.org/0000-0001-9178-9809</orcidid><orcidid>https://orcid.org/0000-0002-0195-9139</orcidid><orcidid>https://orcid.org/0000-0001-5120-8440</orcidid><orcidid>https://orcid.org/0000-0002-6967-5394</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-08, Vol.25 (8), p.9103-9114
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10423908
source IEEE Electronic Library (IEL)
subjects automatic license plate recognition (ALPR) data
Data models
Detectors
Estimation
License plate recognition
Probability
Roads
Traffic control
travel time distribution
travel time probability
vehicle matching algorithm
Vehicle reidentification
title A Vehicle Matching Algorithm by Maximizing Travel Time Probability Based on Automatic License Plate Recognition Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Vehicle%20Matching%20Algorithm%20by%20Maximizing%20Travel%20Time%20Probability%20Based%20on%20Automatic%20License%20Plate%20Recognition%20Data&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=He,%20Chunguang&rft.date=2024-08-01&rft.volume=25&rft.issue=8&rft.spage=9103&rft.epage=9114&rft.pages=9103-9114&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2024.3358625&rft_dat=%3Ccrossref_RIE%3E10_1109_TITS_2024_3358625%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10423908&rfr_iscdi=true