Automated In-Season Crop-Type Data Layer Mapping Without Ground Truth for the Conterminous United States Based on Multisource Satellite Imagery
Mapping nationwide in-season crop-type data is a significant and challenging task in agriculture remote sensing. The existing data product for U.S. crop-type planting, such as the Cropland Data Layer (CDL), falls short in facilitating near-real-time applications. This article designed a workflow aim...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-14 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Li, Hui Di, Liping Zhang, Chen Lin, Li Guo, Liying Yu, Eugene G. Yang, Zhengwei |
description | Mapping nationwide in-season crop-type data is a significant and challenging task in agriculture remote sensing. The existing data product for U.S. crop-type planting, such as the Cropland Data Layer (CDL), falls short in facilitating near-real-time applications. This article designed a workflow aimed at automating the generation of in-season CDL-like products for USA. We methodically extracted trusted pixels as land cover labels from historical CDL datasets, employing Sentinel-2, Landsat 8, and Landsat-9 as sources for spectrum data, using the random forest classifier to conduct nationwide crop-type classifications. These classifications were integrated into the In-Season Crop Data Layer (ICDL) covering the entire Conterminous United States (CONUS). This approach facilitated the efficient generation of ICDLs for May, June, and July 2022, achieving satisfactory accuracy in July. Compared to Nebraska and Iowa ground truth data, ICDL achieved F1 scores of (0.911, 0.845) for corn and (0.959, 0.969) for soybean. Furthermore, ICDL's regional acreage estimates for major crops (corn, soybean, spring wheat, cotton, winter wheat, and rice) closely align with the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) figures, showing minimal variances as low as (0.01%, −0.68%, 0.19%, −4.39%, −5.78%, −1.28%). Notably, ICDL outperforms CDL in most assessments. This research consistently produces annual ICDLs from May to July that are readily accessible to the public in the iCrop system. Simultaneously, it presents an alternative technique for nationwide, in-season mapping of crop types. |
doi_str_mv | 10.1109/TGRS.2024.3361895 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10419370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10419370</ieee_id><sourcerecordid>2927710457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-f43ee07860ca0cccbace8a013813c04392398fedcd138565659b5f331964fdb83</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEEmPwA5A4ROLckTTpR45QYEzahMQ2cayy1N06rU3Jx6G_gr9Mpu2AfLBsv35tPQjdUzKhlIin1fRrOYlJzCeMpTQXyQUa0STJI5JyfolGhIo0inMRX6Mba_eEUJ7QbIR-n73TrXRQ4VkXLUFa3eHC6D5aDT3gV-kknssBDF7Ivm-6Lf5u3E57h6dG-67CK-PdDtfaYLcDXOjOgWmbTnuL111z9F26YG_xi7ShCO4Lf3CN1d4owMswOhyCDM9auQUz3KKrWh4s3J3zGK3f31bFRzT_nM6K53mkYp66qOYMgGR5SpQkSqmNVJBLQllOmSKciZiJvIZKVaGVpCHEJqkZCxR4XW1yNkaPJ9_e6B8P1pX78FEXTpaxiLOMEp5kQUVPKmW0tQbqsjdNK81QUlIeuZdH7uWRe3nmHnYeTjsNAPzTcypYRtgf8_uAsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927710457</pqid></control><display><type>article</type><title>Automated In-Season Crop-Type Data Layer Mapping Without Ground Truth for the Conterminous United States Based on Multisource Satellite Imagery</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Hui ; Di, Liping ; Zhang, Chen ; Lin, Li ; Guo, Liying ; Yu, Eugene G. ; Yang, Zhengwei</creator><creatorcontrib>Li, Hui ; Di, Liping ; Zhang, Chen ; Lin, Li ; Guo, Liying ; Yu, Eugene G. ; Yang, Zhengwei</creatorcontrib><description>Mapping nationwide in-season crop-type data is a significant and challenging task in agriculture remote sensing. The existing data product for U.S. crop-type planting, such as the Cropland Data Layer (CDL), falls short in facilitating near-real-time applications. This article designed a workflow aimed at automating the generation of in-season CDL-like products for USA. We methodically extracted trusted pixels as land cover labels from historical CDL datasets, employing Sentinel-2, Landsat 8, and Landsat-9 as sources for spectrum data, using the random forest classifier to conduct nationwide crop-type classifications. These classifications were integrated into the In-Season Crop Data Layer (ICDL) covering the entire Conterminous United States (CONUS). This approach facilitated the efficient generation of ICDLs for May, June, and July 2022, achieving satisfactory accuracy in July. Compared to Nebraska and Iowa ground truth data, ICDL achieved F1 scores of (0.911, 0.845) for corn and (0.959, 0.969) for soybean. Furthermore, ICDL's regional acreage estimates for major crops (corn, soybean, spring wheat, cotton, winter wheat, and rice) closely align with the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) figures, showing minimal variances as low as (0.01%, −0.68%, 0.19%, −4.39%, −5.78%, −1.28%). Notably, ICDL outperforms CDL in most assessments. This research consistently produces annual ICDLs from May to July that are readily accessible to the public in the iCrop system. Simultaneously, it presents an alternative technique for nationwide, in-season mapping of crop types.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3361895</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agricultural land ; Agriculture ; Automation ; Cereal crops ; Classification ; Corn ; Cotton ; Cropland Data Layer (CDL) ; Crops ; Data mining ; Ground truth ; In-Season Cropland Data Layer (ICDL) ; Land cover ; Land surface ; Landsat ; Landsat satellites ; Mapping ; Meters ; Random forests ; Remote sensing ; Satellite imagery ; Satellite images ; Seasons ; Sentinel-2 ; Soybeans ; Spring wheat ; trusted pixel ; Wheat ; Winter wheat ; Workflow</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-f43ee07860ca0cccbace8a013813c04392398fedcd138565659b5f331964fdb83</cites><orcidid>0000-0001-6547-888X ; 0000-0002-7753-2270 ; 0000-0002-6532-2663 ; 0000-0002-3953-9965 ; 0000-0001-9684-0204 ; 0000-0002-8990-2267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10419370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10419370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Di, Liping</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Lin, Li</creatorcontrib><creatorcontrib>Guo, Liying</creatorcontrib><creatorcontrib>Yu, Eugene G.</creatorcontrib><creatorcontrib>Yang, Zhengwei</creatorcontrib><title>Automated In-Season Crop-Type Data Layer Mapping Without Ground Truth for the Conterminous United States Based on Multisource Satellite Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Mapping nationwide in-season crop-type data is a significant and challenging task in agriculture remote sensing. The existing data product for U.S. crop-type planting, such as the Cropland Data Layer (CDL), falls short in facilitating near-real-time applications. This article designed a workflow aimed at automating the generation of in-season CDL-like products for USA. We methodically extracted trusted pixels as land cover labels from historical CDL datasets, employing Sentinel-2, Landsat 8, and Landsat-9 as sources for spectrum data, using the random forest classifier to conduct nationwide crop-type classifications. These classifications were integrated into the In-Season Crop Data Layer (ICDL) covering the entire Conterminous United States (CONUS). This approach facilitated the efficient generation of ICDLs for May, June, and July 2022, achieving satisfactory accuracy in July. Compared to Nebraska and Iowa ground truth data, ICDL achieved F1 scores of (0.911, 0.845) for corn and (0.959, 0.969) for soybean. Furthermore, ICDL's regional acreage estimates for major crops (corn, soybean, spring wheat, cotton, winter wheat, and rice) closely align with the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) figures, showing minimal variances as low as (0.01%, −0.68%, 0.19%, −4.39%, −5.78%, −1.28%). Notably, ICDL outperforms CDL in most assessments. This research consistently produces annual ICDLs from May to July that are readily accessible to the public in the iCrop system. Simultaneously, it presents an alternative technique for nationwide, in-season mapping of crop types.</description><subject>Agricultural land</subject><subject>Agriculture</subject><subject>Automation</subject><subject>Cereal crops</subject><subject>Classification</subject><subject>Corn</subject><subject>Cotton</subject><subject>Cropland Data Layer (CDL)</subject><subject>Crops</subject><subject>Data mining</subject><subject>Ground truth</subject><subject>In-Season Cropland Data Layer (ICDL)</subject><subject>Land cover</subject><subject>Land surface</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Mapping</subject><subject>Meters</subject><subject>Random forests</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellite images</subject><subject>Seasons</subject><subject>Sentinel-2</subject><subject>Soybeans</subject><subject>Spring wheat</subject><subject>trusted pixel</subject><subject>Wheat</subject><subject>Winter wheat</subject><subject>Workflow</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwzAMhiMEEmPwA5A4ROLckTTpR45QYEzahMQ2cayy1N06rU3Jx6G_gr9Mpu2AfLBsv35tPQjdUzKhlIin1fRrOYlJzCeMpTQXyQUa0STJI5JyfolGhIo0inMRX6Mba_eEUJ7QbIR-n73TrXRQ4VkXLUFa3eHC6D5aDT3gV-kknssBDF7Ivm-6Lf5u3E57h6dG-67CK-PdDtfaYLcDXOjOgWmbTnuL111z9F26YG_xi7ShCO4Lf3CN1d4owMswOhyCDM9auQUz3KKrWh4s3J3zGK3f31bFRzT_nM6K53mkYp66qOYMgGR5SpQkSqmNVJBLQllOmSKciZiJvIZKVaGVpCHEJqkZCxR4XW1yNkaPJ9_e6B8P1pX78FEXTpaxiLOMEp5kQUVPKmW0tQbqsjdNK81QUlIeuZdH7uWRe3nmHnYeTjsNAPzTcypYRtgf8_uAsg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Hui</creator><creator>Di, Liping</creator><creator>Zhang, Chen</creator><creator>Lin, Li</creator><creator>Guo, Liying</creator><creator>Yu, Eugene G.</creator><creator>Yang, Zhengwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6547-888X</orcidid><orcidid>https://orcid.org/0000-0002-7753-2270</orcidid><orcidid>https://orcid.org/0000-0002-6532-2663</orcidid><orcidid>https://orcid.org/0000-0002-3953-9965</orcidid><orcidid>https://orcid.org/0000-0001-9684-0204</orcidid><orcidid>https://orcid.org/0000-0002-8990-2267</orcidid></search><sort><creationdate>2024</creationdate><title>Automated In-Season Crop-Type Data Layer Mapping Without Ground Truth for the Conterminous United States Based on Multisource Satellite Imagery</title><author>Li, Hui ; Di, Liping ; Zhang, Chen ; Lin, Li ; Guo, Liying ; Yu, Eugene G. ; Yang, Zhengwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-f43ee07860ca0cccbace8a013813c04392398fedcd138565659b5f331964fdb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agricultural land</topic><topic>Agriculture</topic><topic>Automation</topic><topic>Cereal crops</topic><topic>Classification</topic><topic>Corn</topic><topic>Cotton</topic><topic>Cropland Data Layer (CDL)</topic><topic>Crops</topic><topic>Data mining</topic><topic>Ground truth</topic><topic>In-Season Cropland Data Layer (ICDL)</topic><topic>Land cover</topic><topic>Land surface</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Mapping</topic><topic>Meters</topic><topic>Random forests</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellite images</topic><topic>Seasons</topic><topic>Sentinel-2</topic><topic>Soybeans</topic><topic>Spring wheat</topic><topic>trusted pixel</topic><topic>Wheat</topic><topic>Winter wheat</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Di, Liping</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Lin, Li</creatorcontrib><creatorcontrib>Guo, Liying</creatorcontrib><creatorcontrib>Yu, Eugene G.</creatorcontrib><creatorcontrib>Yang, Zhengwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Hui</au><au>Di, Liping</au><au>Zhang, Chen</au><au>Lin, Li</au><au>Guo, Liying</au><au>Yu, Eugene G.</au><au>Yang, Zhengwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated In-Season Crop-Type Data Layer Mapping Without Ground Truth for the Conterminous United States Based on Multisource Satellite Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Mapping nationwide in-season crop-type data is a significant and challenging task in agriculture remote sensing. The existing data product for U.S. crop-type planting, such as the Cropland Data Layer (CDL), falls short in facilitating near-real-time applications. This article designed a workflow aimed at automating the generation of in-season CDL-like products for USA. We methodically extracted trusted pixels as land cover labels from historical CDL datasets, employing Sentinel-2, Landsat 8, and Landsat-9 as sources for spectrum data, using the random forest classifier to conduct nationwide crop-type classifications. These classifications were integrated into the In-Season Crop Data Layer (ICDL) covering the entire Conterminous United States (CONUS). This approach facilitated the efficient generation of ICDLs for May, June, and July 2022, achieving satisfactory accuracy in July. Compared to Nebraska and Iowa ground truth data, ICDL achieved F1 scores of (0.911, 0.845) for corn and (0.959, 0.969) for soybean. Furthermore, ICDL's regional acreage estimates for major crops (corn, soybean, spring wheat, cotton, winter wheat, and rice) closely align with the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) figures, showing minimal variances as low as (0.01%, −0.68%, 0.19%, −4.39%, −5.78%, −1.28%). Notably, ICDL outperforms CDL in most assessments. This research consistently produces annual ICDLs from May to July that are readily accessible to the public in the iCrop system. Simultaneously, it presents an alternative technique for nationwide, in-season mapping of crop types.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3361895</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6547-888X</orcidid><orcidid>https://orcid.org/0000-0002-7753-2270</orcidid><orcidid>https://orcid.org/0000-0002-6532-2663</orcidid><orcidid>https://orcid.org/0000-0002-3953-9965</orcidid><orcidid>https://orcid.org/0000-0001-9684-0204</orcidid><orcidid>https://orcid.org/0000-0002-8990-2267</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-14 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10419370 |
source | IEEE Electronic Library (IEL) |
subjects | Agricultural land Agriculture Automation Cereal crops Classification Corn Cotton Cropland Data Layer (CDL) Crops Data mining Ground truth In-Season Cropland Data Layer (ICDL) Land cover Land surface Landsat Landsat satellites Mapping Meters Random forests Remote sensing Satellite imagery Satellite images Seasons Sentinel-2 Soybeans Spring wheat trusted pixel Wheat Winter wheat Workflow |
title | Automated In-Season Crop-Type Data Layer Mapping Without Ground Truth for the Conterminous United States Based on Multisource Satellite Imagery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T18%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20In-Season%20Crop-Type%20Data%20Layer%20Mapping%20Without%20Ground%20Truth%20for%20the%20Conterminous%20United%20States%20Based%20on%20Multisource%20Satellite%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Hui&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3361895&rft_dat=%3Cproquest_RIE%3E2927710457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927710457&rft_id=info:pmid/&rft_ieee_id=10419370&rfr_iscdi=true |