Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization

Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.24596-24608
Hauptverfasser: Roozbehi, Zahra, Narayanan, Ajit, Mohaghegh, Mahsa, Saeedinia, Samaneh-Alsadat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24608
container_issue
container_start_page 24596
container_title IEEE access
container_volume 12
creator Roozbehi, Zahra
Narayanan, Ajit
Mohaghegh, Mahsa
Saeedinia, Samaneh-Alsadat
description Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implementing binaural sound source localization approaches. However, optimizing the topology and size of SNNs is crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-time structure of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN) for localizing sound sources in the time domain by integrating an energy-based localization method. The dataset used in this work is recorded by two different omnidirectional microphones from a real environment. The dataset includes various sound events such as speech, music, and environmental sounds. The proposed ART-rSNN architecture can dynamically adjust the location of its neurons to amplify estimated energy near the sound source, resulting in higher localization accuracy. Our proposed method outperforms several conventional and state of the art algorithms in terms of accuracy and is able to detect the front and back direction of azimuth angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs for improving sound source localization in practical applications.
doi_str_mv 10.1109/ACCESS.2024.3360491
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10418107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418107</ieee_id><doaj_id>oai_doaj_org_article_701f8a75ea4f44c3a67ac76c202e63d9</doaj_id><sourcerecordid>2927652200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c97385f2c06e9ea34d37bc377933cb0b0ada01a74a0e9f5aeeeaeea3dde0213f3</originalsourceid><addsrcrecordid>eNpNUd9LwzAQLqKg6P4CfSj43Jnk2qZ5lDl1MBSsPodbeh2ZtZlpq8y_3miHeHDccdz33Y8vis45m3LO1NX1bDYvy6lgIp0C5CxV_CA6ETxXCWSQH_7Lj6NJ121YsCKUMnkSLW52Lb5Zk5S9H0w_eKriJ-rIfzjr43JrX227jh9o8NiE0H86_xrbNi7d0Fbx0hls7Bf21rVn0VGNTUeTfTyNXm7nz7P7ZPl4t5hdLxMDmeoToyQUWS0My0kRQlqBXBmQUgGYFVsxrJBxlCkyUnWGRBQcoaqICQ41nEaLkbdyuNFbb9_Q77RDq38Lzq81-t6ahrRkvC5QZoRpnaYGMJdoZG7CqyiHSgWuy5Fr6937QF2vN27wbVhfCyVkngnBWOiCsct413We6r-pnOkfCfQogf6RQO8lCKiLEWXDCf8QKS84k_ANQTSDBA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927652200</pqid></control><display><type>article</type><title>Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Roozbehi, Zahra ; Narayanan, Ajit ; Mohaghegh, Mahsa ; Saeedinia, Samaneh-Alsadat</creator><creatorcontrib>Roozbehi, Zahra ; Narayanan, Ajit ; Mohaghegh, Mahsa ; Saeedinia, Samaneh-Alsadat</creatorcontrib><description>Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implementing binaural sound source localization approaches. However, optimizing the topology and size of SNNs is crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-time structure of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN) for localizing sound sources in the time domain by integrating an energy-based localization method. The dataset used in this work is recorded by two different omnidirectional microphones from a real environment. The dataset includes various sound events such as speech, music, and environmental sounds. The proposed ART-rSNN architecture can dynamically adjust the location of its neurons to amplify estimated energy near the sound source, resulting in higher localization accuracy. Our proposed method outperforms several conventional and state of the art algorithms in terms of accuracy and is able to detect the front and back direction of azimuth angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs for improving sound source localization in practical applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3360491</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Acoustics ; adaptive resonance theory ; Algorithms ; Background noise ; Biological neural networks ; Computer architecture ; Datasets ; dynamic structure ; Encoding ; energy-based method ; Heuristic algorithms ; ITD ; Localization ; Localization method ; Location awareness ; Neural networks ; Neurons ; Recurrent neural networks ; Reservoirs ; Resonant frequency ; Sound ; Sound localization ; Sound sources ; spiking neural network ; Topology optimization</subject><ispartof>IEEE access, 2024, Vol.12, p.24596-24608</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-c97385f2c06e9ea34d37bc377933cb0b0ada01a74a0e9f5aeeeaeea3dde0213f3</cites><orcidid>0000-0003-1440-7015 ; 0000-0003-2228-8300 ; 0009-0000-3771-8073 ; 0000-0003-3075-7672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10418107$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Roozbehi, Zahra</creatorcontrib><creatorcontrib>Narayanan, Ajit</creatorcontrib><creatorcontrib>Mohaghegh, Mahsa</creatorcontrib><creatorcontrib>Saeedinia, Samaneh-Alsadat</creatorcontrib><title>Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization</title><title>IEEE access</title><addtitle>Access</addtitle><description>Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implementing binaural sound source localization approaches. However, optimizing the topology and size of SNNs is crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-time structure of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN) for localizing sound sources in the time domain by integrating an energy-based localization method. The dataset used in this work is recorded by two different omnidirectional microphones from a real environment. The dataset includes various sound events such as speech, music, and environmental sounds. The proposed ART-rSNN architecture can dynamically adjust the location of its neurons to amplify estimated energy near the sound source, resulting in higher localization accuracy. Our proposed method outperforms several conventional and state of the art algorithms in terms of accuracy and is able to detect the front and back direction of azimuth angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs for improving sound source localization in practical applications.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>adaptive resonance theory</subject><subject>Algorithms</subject><subject>Background noise</subject><subject>Biological neural networks</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>dynamic structure</subject><subject>Encoding</subject><subject>energy-based method</subject><subject>Heuristic algorithms</subject><subject>ITD</subject><subject>Localization</subject><subject>Localization method</subject><subject>Location awareness</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Recurrent neural networks</subject><subject>Reservoirs</subject><subject>Resonant frequency</subject><subject>Sound</subject><subject>Sound localization</subject><subject>Sound sources</subject><subject>spiking neural network</subject><subject>Topology optimization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUd9LwzAQLqKg6P4CfSj43Jnk2qZ5lDl1MBSsPodbeh2ZtZlpq8y_3miHeHDccdz33Y8vis45m3LO1NX1bDYvy6lgIp0C5CxV_CA6ETxXCWSQH_7Lj6NJ121YsCKUMnkSLW52Lb5Zk5S9H0w_eKriJ-rIfzjr43JrX227jh9o8NiE0H86_xrbNi7d0Fbx0hls7Bf21rVn0VGNTUeTfTyNXm7nz7P7ZPl4t5hdLxMDmeoToyQUWS0My0kRQlqBXBmQUgGYFVsxrJBxlCkyUnWGRBQcoaqICQ41nEaLkbdyuNFbb9_Q77RDq38Lzq81-t6ahrRkvC5QZoRpnaYGMJdoZG7CqyiHSgWuy5Fr6937QF2vN27wbVhfCyVkngnBWOiCsct413We6r-pnOkfCfQogf6RQO8lCKiLEWXDCf8QKS84k_ANQTSDBA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Roozbehi, Zahra</creator><creator>Narayanan, Ajit</creator><creator>Mohaghegh, Mahsa</creator><creator>Saeedinia, Samaneh-Alsadat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1440-7015</orcidid><orcidid>https://orcid.org/0000-0003-2228-8300</orcidid><orcidid>https://orcid.org/0009-0000-3771-8073</orcidid><orcidid>https://orcid.org/0000-0003-3075-7672</orcidid></search><sort><creationdate>2024</creationdate><title>Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization</title><author>Roozbehi, Zahra ; Narayanan, Ajit ; Mohaghegh, Mahsa ; Saeedinia, Samaneh-Alsadat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c97385f2c06e9ea34d37bc377933cb0b0ada01a74a0e9f5aeeeaeea3dde0213f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>adaptive resonance theory</topic><topic>Algorithms</topic><topic>Background noise</topic><topic>Biological neural networks</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>dynamic structure</topic><topic>Encoding</topic><topic>energy-based method</topic><topic>Heuristic algorithms</topic><topic>ITD</topic><topic>Localization</topic><topic>Localization method</topic><topic>Location awareness</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Recurrent neural networks</topic><topic>Reservoirs</topic><topic>Resonant frequency</topic><topic>Sound</topic><topic>Sound localization</topic><topic>Sound sources</topic><topic>spiking neural network</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roozbehi, Zahra</creatorcontrib><creatorcontrib>Narayanan, Ajit</creatorcontrib><creatorcontrib>Mohaghegh, Mahsa</creatorcontrib><creatorcontrib>Saeedinia, Samaneh-Alsadat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roozbehi, Zahra</au><au>Narayanan, Ajit</au><au>Mohaghegh, Mahsa</au><au>Saeedinia, Samaneh-Alsadat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>24596</spage><epage>24608</epage><pages>24596-24608</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implementing binaural sound source localization approaches. However, optimizing the topology and size of SNNs is crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-time structure of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN) for localizing sound sources in the time domain by integrating an energy-based localization method. The dataset used in this work is recorded by two different omnidirectional microphones from a real environment. The dataset includes various sound events such as speech, music, and environmental sounds. The proposed ART-rSNN architecture can dynamically adjust the location of its neurons to amplify estimated energy near the sound source, resulting in higher localization accuracy. Our proposed method outperforms several conventional and state of the art algorithms in terms of accuracy and is able to detect the front and back direction of azimuth angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs for improving sound source localization in practical applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3360491</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1440-7015</orcidid><orcidid>https://orcid.org/0000-0003-2228-8300</orcidid><orcidid>https://orcid.org/0009-0000-3771-8073</orcidid><orcidid>https://orcid.org/0000-0003-3075-7672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.24596-24608
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10418107
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Acoustics
adaptive resonance theory
Algorithms
Background noise
Biological neural networks
Computer architecture
Datasets
dynamic structure
Encoding
energy-based method
Heuristic algorithms
ITD
Localization
Localization method
Location awareness
Neural networks
Neurons
Recurrent neural networks
Reservoirs
Resonant frequency
Sound
Sound localization
Sound sources
spiking neural network
Topology optimization
title Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic-Structured%20Reservoir%20Spiking%20Neural%20Network%20in%20Sound%20Localization&rft.jtitle=IEEE%20access&rft.au=Roozbehi,%20Zahra&rft.date=2024&rft.volume=12&rft.spage=24596&rft.epage=24608&rft.pages=24596-24608&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3360491&rft_dat=%3Cproquest_ieee_%3E2927652200%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927652200&rft_id=info:pmid/&rft_ieee_id=10418107&rft_doaj_id=oai_doaj_org_article_701f8a75ea4f44c3a67ac76c202e63d9&rfr_iscdi=true