Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization
Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implement...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.24596-24608 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24608 |
---|---|
container_issue | |
container_start_page | 24596 |
container_title | IEEE access |
container_volume | 12 |
creator | Roozbehi, Zahra Narayanan, Ajit Mohaghegh, Mahsa Saeedinia, Samaneh-Alsadat |
description | Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implementing binaural sound source localization approaches. However, optimizing the topology and size of SNNs is crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-time structure of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN) for localizing sound sources in the time domain by integrating an energy-based localization method. The dataset used in this work is recorded by two different omnidirectional microphones from a real environment. The dataset includes various sound events such as speech, music, and environmental sounds. The proposed ART-rSNN architecture can dynamically adjust the location of its neurons to amplify estimated energy near the sound source, resulting in higher localization accuracy. Our proposed method outperforms several conventional and state of the art algorithms in terms of accuracy and is able to detect the front and back direction of azimuth angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs for improving sound source localization in practical applications. |
doi_str_mv | 10.1109/ACCESS.2024.3360491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10418107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418107</ieee_id><doaj_id>oai_doaj_org_article_701f8a75ea4f44c3a67ac76c202e63d9</doaj_id><sourcerecordid>2927652200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c97385f2c06e9ea34d37bc377933cb0b0ada01a74a0e9f5aeeeaeea3dde0213f3</originalsourceid><addsrcrecordid>eNpNUd9LwzAQLqKg6P4CfSj43Jnk2qZ5lDl1MBSsPodbeh2ZtZlpq8y_3miHeHDccdz33Y8vis45m3LO1NX1bDYvy6lgIp0C5CxV_CA6ETxXCWSQH_7Lj6NJ121YsCKUMnkSLW52Lb5Zk5S9H0w_eKriJ-rIfzjr43JrX227jh9o8NiE0H86_xrbNi7d0Fbx0hls7Bf21rVn0VGNTUeTfTyNXm7nz7P7ZPl4t5hdLxMDmeoToyQUWS0My0kRQlqBXBmQUgGYFVsxrJBxlCkyUnWGRBQcoaqICQ41nEaLkbdyuNFbb9_Q77RDq38Lzq81-t6ahrRkvC5QZoRpnaYGMJdoZG7CqyiHSgWuy5Fr6937QF2vN27wbVhfCyVkngnBWOiCsct413We6r-pnOkfCfQogf6RQO8lCKiLEWXDCf8QKS84k_ANQTSDBA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927652200</pqid></control><display><type>article</type><title>Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Roozbehi, Zahra ; Narayanan, Ajit ; Mohaghegh, Mahsa ; Saeedinia, Samaneh-Alsadat</creator><creatorcontrib>Roozbehi, Zahra ; Narayanan, Ajit ; Mohaghegh, Mahsa ; Saeedinia, Samaneh-Alsadat</creatorcontrib><description>Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implementing binaural sound source localization approaches. However, optimizing the topology and size of SNNs is crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-time structure of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN) for localizing sound sources in the time domain by integrating an energy-based localization method. The dataset used in this work is recorded by two different omnidirectional microphones from a real environment. The dataset includes various sound events such as speech, music, and environmental sounds. The proposed ART-rSNN architecture can dynamically adjust the location of its neurons to amplify estimated energy near the sound source, resulting in higher localization accuracy. Our proposed method outperforms several conventional and state of the art algorithms in terms of accuracy and is able to detect the front and back direction of azimuth angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs for improving sound source localization in practical applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3360491</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Acoustics ; adaptive resonance theory ; Algorithms ; Background noise ; Biological neural networks ; Computer architecture ; Datasets ; dynamic structure ; Encoding ; energy-based method ; Heuristic algorithms ; ITD ; Localization ; Localization method ; Location awareness ; Neural networks ; Neurons ; Recurrent neural networks ; Reservoirs ; Resonant frequency ; Sound ; Sound localization ; Sound sources ; spiking neural network ; Topology optimization</subject><ispartof>IEEE access, 2024, Vol.12, p.24596-24608</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-c97385f2c06e9ea34d37bc377933cb0b0ada01a74a0e9f5aeeeaeea3dde0213f3</cites><orcidid>0000-0003-1440-7015 ; 0000-0003-2228-8300 ; 0009-0000-3771-8073 ; 0000-0003-3075-7672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10418107$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Roozbehi, Zahra</creatorcontrib><creatorcontrib>Narayanan, Ajit</creatorcontrib><creatorcontrib>Mohaghegh, Mahsa</creatorcontrib><creatorcontrib>Saeedinia, Samaneh-Alsadat</creatorcontrib><title>Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization</title><title>IEEE access</title><addtitle>Access</addtitle><description>Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implementing binaural sound source localization approaches. However, optimizing the topology and size of SNNs is crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-time structure of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN) for localizing sound sources in the time domain by integrating an energy-based localization method. The dataset used in this work is recorded by two different omnidirectional microphones from a real environment. The dataset includes various sound events such as speech, music, and environmental sounds. The proposed ART-rSNN architecture can dynamically adjust the location of its neurons to amplify estimated energy near the sound source, resulting in higher localization accuracy. Our proposed method outperforms several conventional and state of the art algorithms in terms of accuracy and is able to detect the front and back direction of azimuth angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs for improving sound source localization in practical applications.</description><subject>Accuracy</subject><subject>Acoustics</subject><subject>adaptive resonance theory</subject><subject>Algorithms</subject><subject>Background noise</subject><subject>Biological neural networks</subject><subject>Computer architecture</subject><subject>Datasets</subject><subject>dynamic structure</subject><subject>Encoding</subject><subject>energy-based method</subject><subject>Heuristic algorithms</subject><subject>ITD</subject><subject>Localization</subject><subject>Localization method</subject><subject>Location awareness</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Recurrent neural networks</subject><subject>Reservoirs</subject><subject>Resonant frequency</subject><subject>Sound</subject><subject>Sound localization</subject><subject>Sound sources</subject><subject>spiking neural network</subject><subject>Topology optimization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUd9LwzAQLqKg6P4CfSj43Jnk2qZ5lDl1MBSsPodbeh2ZtZlpq8y_3miHeHDccdz33Y8vis45m3LO1NX1bDYvy6lgIp0C5CxV_CA6ETxXCWSQH_7Lj6NJ121YsCKUMnkSLW52Lb5Zk5S9H0w_eKriJ-rIfzjr43JrX227jh9o8NiE0H86_xrbNi7d0Fbx0hls7Bf21rVn0VGNTUeTfTyNXm7nz7P7ZPl4t5hdLxMDmeoToyQUWS0My0kRQlqBXBmQUgGYFVsxrJBxlCkyUnWGRBQcoaqICQ41nEaLkbdyuNFbb9_Q77RDq38Lzq81-t6ahrRkvC5QZoRpnaYGMJdoZG7CqyiHSgWuy5Fr6937QF2vN27wbVhfCyVkngnBWOiCsct413We6r-pnOkfCfQogf6RQO8lCKiLEWXDCf8QKS84k_ANQTSDBA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Roozbehi, Zahra</creator><creator>Narayanan, Ajit</creator><creator>Mohaghegh, Mahsa</creator><creator>Saeedinia, Samaneh-Alsadat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1440-7015</orcidid><orcidid>https://orcid.org/0000-0003-2228-8300</orcidid><orcidid>https://orcid.org/0009-0000-3771-8073</orcidid><orcidid>https://orcid.org/0000-0003-3075-7672</orcidid></search><sort><creationdate>2024</creationdate><title>Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization</title><author>Roozbehi, Zahra ; Narayanan, Ajit ; Mohaghegh, Mahsa ; Saeedinia, Samaneh-Alsadat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c97385f2c06e9ea34d37bc377933cb0b0ada01a74a0e9f5aeeeaeea3dde0213f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Acoustics</topic><topic>adaptive resonance theory</topic><topic>Algorithms</topic><topic>Background noise</topic><topic>Biological neural networks</topic><topic>Computer architecture</topic><topic>Datasets</topic><topic>dynamic structure</topic><topic>Encoding</topic><topic>energy-based method</topic><topic>Heuristic algorithms</topic><topic>ITD</topic><topic>Localization</topic><topic>Localization method</topic><topic>Location awareness</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Recurrent neural networks</topic><topic>Reservoirs</topic><topic>Resonant frequency</topic><topic>Sound</topic><topic>Sound localization</topic><topic>Sound sources</topic><topic>spiking neural network</topic><topic>Topology optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roozbehi, Zahra</creatorcontrib><creatorcontrib>Narayanan, Ajit</creatorcontrib><creatorcontrib>Mohaghegh, Mahsa</creatorcontrib><creatorcontrib>Saeedinia, Samaneh-Alsadat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roozbehi, Zahra</au><au>Narayanan, Ajit</au><au>Mohaghegh, Mahsa</au><au>Saeedinia, Samaneh-Alsadat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>24596</spage><epage>24608</epage><pages>24596-24608</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Sound source localization is a critical problem in various fields, including communication, security, and entertainment. Binaural cues are a natural technique used by mammalian ears for efficient sound source localization. Spiking neural networks (SNNs) have emerged as a promising tool for implementing binaural sound source localization approaches. However, optimizing the topology and size of SNNs is crucial to reduce computational costs while maintaining accuracy. This paper proposes a real-time structure of a reservoir SNN (rSNN) called Adaptive-Resonance-Theory-based rSNN (ART-rSNN) for localizing sound sources in the time domain by integrating an energy-based localization method. The dataset used in this work is recorded by two different omnidirectional microphones from a real environment. The dataset includes various sound events such as speech, music, and environmental sounds. The proposed ART-rSNN architecture can dynamically adjust the location of its neurons to amplify estimated energy near the sound source, resulting in higher localization accuracy. Our proposed method outperforms several conventional and state of the art algorithms in terms of accuracy and is able to detect the front and back direction of azimuth angle. This work demonstrates the potential of dynamic neuron arrangements in SNNs for improving sound source localization in practical applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3360491</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1440-7015</orcidid><orcidid>https://orcid.org/0000-0003-2228-8300</orcidid><orcidid>https://orcid.org/0009-0000-3771-8073</orcidid><orcidid>https://orcid.org/0000-0003-3075-7672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.24596-24608 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10418107 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Acoustics adaptive resonance theory Algorithms Background noise Biological neural networks Computer architecture Datasets dynamic structure Encoding energy-based method Heuristic algorithms ITD Localization Localization method Location awareness Neural networks Neurons Recurrent neural networks Reservoirs Resonant frequency Sound Sound localization Sound sources spiking neural network Topology optimization |
title | Dynamic-Structured Reservoir Spiking Neural Network in Sound Localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic-Structured%20Reservoir%20Spiking%20Neural%20Network%20in%20Sound%20Localization&rft.jtitle=IEEE%20access&rft.au=Roozbehi,%20Zahra&rft.date=2024&rft.volume=12&rft.spage=24596&rft.epage=24608&rft.pages=24596-24608&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3360491&rft_dat=%3Cproquest_ieee_%3E2927652200%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927652200&rft_id=info:pmid/&rft_ieee_id=10418107&rft_doaj_id=oai_doaj_org_article_701f8a75ea4f44c3a67ac76c202e63d9&rfr_iscdi=true |