Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet
Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in ma...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.18931-18938 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18938 |
---|---|
container_issue | |
container_start_page | 18931 |
container_title | IEEE access |
container_volume | 12 |
creator | Lim, Soon-Bum Lee, Yujin Song, Yoojeong |
description | Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in machine learning and computer vision to deeply understand font characteristics and enhance the accuracy of multilingual font matching. Utilizing the 'stroke elements' of fonts is crucial for this matching, building upon the successful development of a method to calculate similarity between Korean fonts in previous studies. We have applied this approach to the English alphabet, defining distinctive 'stroke elements' and developing a deep learning model for their automatic extraction. Additionally, we evaluate the performance of this stroke element extraction model and discuss strategies to further improve extraction accuracy. This groundwork establishes the basis for multilingual font matching and enables the recommendation of similar fonts using the 'stroke elements' of the English alphabet. |
doi_str_mv | 10.1109/ACCESS.2024.3360482 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10418082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418082</ieee_id><doaj_id>oai_doaj_org_article_db8211e420d940cb84b0b72a1d886b16</doaj_id><sourcerecordid>2924035678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1a35d4dfabb829f77eaba50ad67c3275f2d72c62d51cd90f03ff2cb618adbe813</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUILDWl-QXsQ9GxHH7ta7XFx3TYQaMHtWYykUSxnvXIlGZp_XyUbQuYyM2_mvWF4TfOJ0TVjdLgZN5vtbrfmlLdrISRtFb9oLjmTw0p0Qr57U39ornM-0BqqQl1_2div6MMcSogzgdmR8VziEUqwZPuvJLDPg1-YfExHmC2ScYbpMYdMoie7kuIDku2ER5xLJmEmZV_7-X4KeU_G6bQHg-Vj897DlPH6JV81f75tf29-rO5-fr_djHcrK7qhrBiIzrXOgzGKD77vEQx0FJzsreB957nruZXcdcy6gXoqvOfWSKbAGVRMXDW3i66LcNCnFI6QHnWEoJ-BmO41pPrahNrVE4xhy6kbWmqNag01PQfmlJKGyar1ZdE6pfj3jLnoQzyn-nvWfOAtFZ3sVd0Sy5ZNMeeE_vUqo_rJHL2Yo5_M0S_mVNbnhRUQ8Q2jZYrW8X-OxYvS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924035678</pqid></control><display><type>article</type><title>Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lim, Soon-Bum ; Lee, Yujin ; Song, Yoojeong</creator><creatorcontrib>Lim, Soon-Bum ; Lee, Yujin ; Song, Yoojeong</creatorcontrib><description>Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in machine learning and computer vision to deeply understand font characteristics and enhance the accuracy of multilingual font matching. Utilizing the 'stroke elements' of fonts is crucial for this matching, building upon the successful development of a method to calculate similarity between Korean fonts in previous studies. We have applied this approach to the English alphabet, defining distinctive 'stroke elements' and developing a deep learning model for their automatic extraction. Additionally, we evaluate the performance of this stroke element extraction model and discuss strategies to further improve extraction accuracy. This groundwork establishes the basis for multilingual font matching and enables the recommendation of similar fonts using the 'stroke elements' of the English alphabet.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3360482</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alphabets ; Artificial neural networks ; Character recognition ; Computer vision ; Deep learning ; diverse font styles ; Feature extraction ; fonts ; Image recognition ; Machine learning ; Matching ; Multilingualism ; object extraction model ; Performance evaluation ; Task analysis ; Visualization ; Writing</subject><ispartof>IEEE access, 2024, Vol.12, p.18931-18938</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-1a35d4dfabb829f77eaba50ad67c3275f2d72c62d51cd90f03ff2cb618adbe813</cites><orcidid>0000-0003-1666-6803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10418082$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lim, Soon-Bum</creatorcontrib><creatorcontrib>Lee, Yujin</creatorcontrib><creatorcontrib>Song, Yoojeong</creatorcontrib><title>Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in machine learning and computer vision to deeply understand font characteristics and enhance the accuracy of multilingual font matching. Utilizing the 'stroke elements' of fonts is crucial for this matching, building upon the successful development of a method to calculate similarity between Korean fonts in previous studies. We have applied this approach to the English alphabet, defining distinctive 'stroke elements' and developing a deep learning model for their automatic extraction. Additionally, we evaluate the performance of this stroke element extraction model and discuss strategies to further improve extraction accuracy. This groundwork establishes the basis for multilingual font matching and enables the recommendation of similar fonts using the 'stroke elements' of the English alphabet.</description><subject>Alphabets</subject><subject>Artificial neural networks</subject><subject>Character recognition</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>diverse font styles</subject><subject>Feature extraction</subject><subject>fonts</subject><subject>Image recognition</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Multilingualism</subject><subject>object extraction model</subject><subject>Performance evaluation</subject><subject>Task analysis</subject><subject>Visualization</subject><subject>Writing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUILDWl-QXsQ9GxHH7ta7XFx3TYQaMHtWYykUSxnvXIlGZp_XyUbQuYyM2_mvWF4TfOJ0TVjdLgZN5vtbrfmlLdrISRtFb9oLjmTw0p0Qr57U39ornM-0BqqQl1_2div6MMcSogzgdmR8VziEUqwZPuvJLDPg1-YfExHmC2ScYbpMYdMoie7kuIDku2ER5xLJmEmZV_7-X4KeU_G6bQHg-Vj897DlPH6JV81f75tf29-rO5-fr_djHcrK7qhrBiIzrXOgzGKD77vEQx0FJzsreB957nruZXcdcy6gXoqvOfWSKbAGVRMXDW3i66LcNCnFI6QHnWEoJ-BmO41pPrahNrVE4xhy6kbWmqNag01PQfmlJKGyar1ZdE6pfj3jLnoQzyn-nvWfOAtFZ3sVd0Sy5ZNMeeE_vUqo_rJHL2Yo5_M0S_mVNbnhRUQ8Q2jZYrW8X-OxYvS</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lim, Soon-Bum</creator><creator>Lee, Yujin</creator><creator>Song, Yoojeong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1666-6803</orcidid></search><sort><creationdate>2024</creationdate><title>Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet</title><author>Lim, Soon-Bum ; Lee, Yujin ; Song, Yoojeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1a35d4dfabb829f77eaba50ad67c3275f2d72c62d51cd90f03ff2cb618adbe813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alphabets</topic><topic>Artificial neural networks</topic><topic>Character recognition</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>diverse font styles</topic><topic>Feature extraction</topic><topic>fonts</topic><topic>Image recognition</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Multilingualism</topic><topic>object extraction model</topic><topic>Performance evaluation</topic><topic>Task analysis</topic><topic>Visualization</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Soon-Bum</creatorcontrib><creatorcontrib>Lee, Yujin</creatorcontrib><creatorcontrib>Song, Yoojeong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Soon-Bum</au><au>Lee, Yujin</au><au>Song, Yoojeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>18931</spage><epage>18938</epage><pages>18931-18938</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in machine learning and computer vision to deeply understand font characteristics and enhance the accuracy of multilingual font matching. Utilizing the 'stroke elements' of fonts is crucial for this matching, building upon the successful development of a method to calculate similarity between Korean fonts in previous studies. We have applied this approach to the English alphabet, defining distinctive 'stroke elements' and developing a deep learning model for their automatic extraction. Additionally, we evaluate the performance of this stroke element extraction model and discuss strategies to further improve extraction accuracy. This groundwork establishes the basis for multilingual font matching and enables the recommendation of similar fonts using the 'stroke elements' of the English alphabet.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3360482</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1666-6803</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.18931-18938 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10418082 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Alphabets Artificial neural networks Character recognition Computer vision Deep learning diverse font styles Feature extraction fonts Image recognition Machine learning Matching Multilingualism object extraction model Performance evaluation Task analysis Visualization Writing |
title | Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Definition%20and%20Automatic%20Extraction%20Performance%20Analysis%20of%20Stroke%20Elements%20in%20the%20English%20Alphabet&rft.jtitle=IEEE%20access&rft.au=Lim,%20Soon-Bum&rft.date=2024&rft.volume=12&rft.spage=18931&rft.epage=18938&rft.pages=18931-18938&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3360482&rft_dat=%3Cproquest_ieee_%3E2924035678%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924035678&rft_id=info:pmid/&rft_ieee_id=10418082&rft_doaj_id=oai_doaj_org_article_db8211e420d940cb84b0b72a1d886b16&rfr_iscdi=true |