Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet

Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.18931-18938
Hauptverfasser: Lim, Soon-Bum, Lee, Yujin, Song, Yoojeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18938
container_issue
container_start_page 18931
container_title IEEE access
container_volume 12
creator Lim, Soon-Bum
Lee, Yujin
Song, Yoojeong
description Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in machine learning and computer vision to deeply understand font characteristics and enhance the accuracy of multilingual font matching. Utilizing the 'stroke elements' of fonts is crucial for this matching, building upon the successful development of a method to calculate similarity between Korean fonts in previous studies. We have applied this approach to the English alphabet, defining distinctive 'stroke elements' and developing a deep learning model for their automatic extraction. Additionally, we evaluate the performance of this stroke element extraction model and discuss strategies to further improve extraction accuracy. This groundwork establishes the basis for multilingual font matching and enables the recommendation of similar fonts using the 'stroke elements' of the English alphabet.
doi_str_mv 10.1109/ACCESS.2024.3360482
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10418082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418082</ieee_id><doaj_id>oai_doaj_org_article_db8211e420d940cb84b0b72a1d886b16</doaj_id><sourcerecordid>2924035678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1a35d4dfabb829f77eaba50ad67c3275f2d72c62d51cd90f03ff2cb618adbe813</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUILDWl-QXsQ9GxHH7ta7XFx3TYQaMHtWYykUSxnvXIlGZp_XyUbQuYyM2_mvWF4TfOJ0TVjdLgZN5vtbrfmlLdrISRtFb9oLjmTw0p0Qr57U39ornM-0BqqQl1_2div6MMcSogzgdmR8VziEUqwZPuvJLDPg1-YfExHmC2ScYbpMYdMoie7kuIDku2ER5xLJmEmZV_7-X4KeU_G6bQHg-Vj897DlPH6JV81f75tf29-rO5-fr_djHcrK7qhrBiIzrXOgzGKD77vEQx0FJzsreB957nruZXcdcy6gXoqvOfWSKbAGVRMXDW3i66LcNCnFI6QHnWEoJ-BmO41pPrahNrVE4xhy6kbWmqNag01PQfmlJKGyar1ZdE6pfj3jLnoQzyn-nvWfOAtFZ3sVd0Sy5ZNMeeE_vUqo_rJHL2Yo5_M0S_mVNbnhRUQ8Q2jZYrW8X-OxYvS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2924035678</pqid></control><display><type>article</type><title>Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lim, Soon-Bum ; Lee, Yujin ; Song, Yoojeong</creator><creatorcontrib>Lim, Soon-Bum ; Lee, Yujin ; Song, Yoojeong</creatorcontrib><description>Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in machine learning and computer vision to deeply understand font characteristics and enhance the accuracy of multilingual font matching. Utilizing the 'stroke elements' of fonts is crucial for this matching, building upon the successful development of a method to calculate similarity between Korean fonts in previous studies. We have applied this approach to the English alphabet, defining distinctive 'stroke elements' and developing a deep learning model for their automatic extraction. Additionally, we evaluate the performance of this stroke element extraction model and discuss strategies to further improve extraction accuracy. This groundwork establishes the basis for multilingual font matching and enables the recommendation of similar fonts using the 'stroke elements' of the English alphabet.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3360482</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alphabets ; Artificial neural networks ; Character recognition ; Computer vision ; Deep learning ; diverse font styles ; Feature extraction ; fonts ; Image recognition ; Machine learning ; Matching ; Multilingualism ; object extraction model ; Performance evaluation ; Task analysis ; Visualization ; Writing</subject><ispartof>IEEE access, 2024, Vol.12, p.18931-18938</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-1a35d4dfabb829f77eaba50ad67c3275f2d72c62d51cd90f03ff2cb618adbe813</cites><orcidid>0000-0003-1666-6803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10418082$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Lim, Soon-Bum</creatorcontrib><creatorcontrib>Lee, Yujin</creatorcontrib><creatorcontrib>Song, Yoojeong</creatorcontrib><title>Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in machine learning and computer vision to deeply understand font characteristics and enhance the accuracy of multilingual font matching. Utilizing the 'stroke elements' of fonts is crucial for this matching, building upon the successful development of a method to calculate similarity between Korean fonts in previous studies. We have applied this approach to the English alphabet, defining distinctive 'stroke elements' and developing a deep learning model for their automatic extraction. Additionally, we evaluate the performance of this stroke element extraction model and discuss strategies to further improve extraction accuracy. This groundwork establishes the basis for multilingual font matching and enables the recommendation of similar fonts using the 'stroke elements' of the English alphabet.</description><subject>Alphabets</subject><subject>Artificial neural networks</subject><subject>Character recognition</subject><subject>Computer vision</subject><subject>Deep learning</subject><subject>diverse font styles</subject><subject>Feature extraction</subject><subject>fonts</subject><subject>Image recognition</subject><subject>Machine learning</subject><subject>Matching</subject><subject>Multilingualism</subject><subject>object extraction model</subject><subject>Performance evaluation</subject><subject>Task analysis</subject><subject>Visualization</subject><subject>Writing</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUILDWl-QXsQ9GxHH7ta7XFx3TYQaMHtWYykUSxnvXIlGZp_XyUbQuYyM2_mvWF4TfOJ0TVjdLgZN5vtbrfmlLdrISRtFb9oLjmTw0p0Qr57U39ornM-0BqqQl1_2div6MMcSogzgdmR8VziEUqwZPuvJLDPg1-YfExHmC2ScYbpMYdMoie7kuIDku2ER5xLJmEmZV_7-X4KeU_G6bQHg-Vj897DlPH6JV81f75tf29-rO5-fr_djHcrK7qhrBiIzrXOgzGKD77vEQx0FJzsreB957nruZXcdcy6gXoqvOfWSKbAGVRMXDW3i66LcNCnFI6QHnWEoJ-BmO41pPrahNrVE4xhy6kbWmqNag01PQfmlJKGyar1ZdE6pfj3jLnoQzyn-nvWfOAtFZ3sVd0Sy5ZNMeeE_vUqo_rJHL2Yo5_M0S_mVNbnhRUQ8Q2jZYrW8X-OxYvS</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lim, Soon-Bum</creator><creator>Lee, Yujin</creator><creator>Song, Yoojeong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1666-6803</orcidid></search><sort><creationdate>2024</creationdate><title>Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet</title><author>Lim, Soon-Bum ; Lee, Yujin ; Song, Yoojeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1a35d4dfabb829f77eaba50ad67c3275f2d72c62d51cd90f03ff2cb618adbe813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alphabets</topic><topic>Artificial neural networks</topic><topic>Character recognition</topic><topic>Computer vision</topic><topic>Deep learning</topic><topic>diverse font styles</topic><topic>Feature extraction</topic><topic>fonts</topic><topic>Image recognition</topic><topic>Machine learning</topic><topic>Matching</topic><topic>Multilingualism</topic><topic>object extraction model</topic><topic>Performance evaluation</topic><topic>Task analysis</topic><topic>Visualization</topic><topic>Writing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Soon-Bum</creatorcontrib><creatorcontrib>Lee, Yujin</creatorcontrib><creatorcontrib>Song, Yoojeong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Soon-Bum</au><au>Lee, Yujin</au><au>Song, Yoojeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>18931</spage><epage>18938</epage><pages>18931-18938</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fonts are a critical element that determines the perception of any medium. To ensure consistent and culturally appropriate font selection across diverse language groups, a multilingual font matching system is currently in development. This research focuses on leveraging the latest advancements in machine learning and computer vision to deeply understand font characteristics and enhance the accuracy of multilingual font matching. Utilizing the 'stroke elements' of fonts is crucial for this matching, building upon the successful development of a method to calculate similarity between Korean fonts in previous studies. We have applied this approach to the English alphabet, defining distinctive 'stroke elements' and developing a deep learning model for their automatic extraction. Additionally, we evaluate the performance of this stroke element extraction model and discuss strategies to further improve extraction accuracy. This groundwork establishes the basis for multilingual font matching and enables the recommendation of similar fonts using the 'stroke elements' of the English alphabet.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3360482</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1666-6803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.18931-18938
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_10418082
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Alphabets
Artificial neural networks
Character recognition
Computer vision
Deep learning
diverse font styles
Feature extraction
fonts
Image recognition
Machine learning
Matching
Multilingualism
object extraction model
Performance evaluation
Task analysis
Visualization
Writing
title Definition and Automatic Extraction Performance Analysis of Stroke Elements in the English Alphabet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Definition%20and%20Automatic%20Extraction%20Performance%20Analysis%20of%20Stroke%20Elements%20in%20the%20English%20Alphabet&rft.jtitle=IEEE%20access&rft.au=Lim,%20Soon-Bum&rft.date=2024&rft.volume=12&rft.spage=18931&rft.epage=18938&rft.pages=18931-18938&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3360482&rft_dat=%3Cproquest_ieee_%3E2924035678%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2924035678&rft_id=info:pmid/&rft_ieee_id=10418082&rft_doaj_id=oai_doaj_org_article_db8211e420d940cb84b0b72a1d886b16&rfr_iscdi=true