Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories
This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-03, Vol.71 (3), p.1886-1892 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1892 |
---|---|
container_issue | 3 |
container_start_page | 1886 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Talapatra, Abhishek Weisheit, Martin Muller, Johannes Mansueto, Marco Hazen, Daniel Sanchez Komma, Venkata Siva Zaka, Alban |
description | This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the easy axis at real temperatures. The reported modeling methodology has been validated against the hardware (HW) data of GlobalFoundries on the 22FDX technology node. We have clearly explained the routes for proper estimation of the input parameters along with the identification of important tuning parameters in the model. The model is based on a single effective free layer approximation of the magnetic tunnel junction (MTJ) and captures the variations of the thermal stability factor with the variations in free layer thickness, the diameter of the MTJ pillars, and the processing routes. |
doi_str_mv | 10.1109/TED.2024.3354695 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10415369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10415369</ieee_id><sourcerecordid>2933609649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ea6e35b6cefef87d3426a1c04848644963b66a60b6a44a6a1eae84517d0802c43</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXho4nmxX1u2R4KgJhATWM-bbncWSpYttsWE_94SPHiZyWTemzf5IfRIyYhSol7K2euIESZGnOdCqvwKDWiejzMlhbxGA0JokSle8Ft0F8IujVIINkB-6RrobL_BS4hb17jObU64dR6XW_B73eF11LXtbDzhuTYxLWyP14dUSq_70EJSOv99BLzUmx6iy1YQbIj2B_BK943b44kxEEIK2DtvIdyjm1Z3AR7--hB9zWfl9D1bfL59TCeLzDDFYgZaAs9raaCFthg3XDCpqSGiEEX6XUleS6klqaUWQqcVaChETscNKQgzgg_R8-Xuwbv0X4jVzh19nyIrpjiXJKFRSUUuKuNdCB7a6uDtXvtTRUl1JlslstWZbPVHNlmeLhYLAP_kguZcKv4LN3t1gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933609649</pqid></control><display><type>article</type><title>Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories</title><source>IEEE Electronic Library (IEL)</source><creator>Talapatra, Abhishek ; Weisheit, Martin ; Muller, Johannes ; Mansueto, Marco ; Hazen, Daniel Sanchez ; Komma, Venkata Siva ; Zaka, Alban</creator><creatorcontrib>Talapatra, Abhishek ; Weisheit, Martin ; Muller, Johannes ; Mansueto, Marco ; Hazen, Daniel Sanchez ; Komma, Venkata Siva ; Zaka, Alban</creatorcontrib><description>This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the easy axis at real temperatures. The reported modeling methodology has been validated against the hardware (HW) data of GlobalFoundries on the 22FDX technology node. We have clearly explained the routes for proper estimation of the input parameters along with the identification of important tuning parameters in the model. The model is based on a single effective free layer approximation of the magnetic tunnel junction (MTJ) and captures the variations of the thermal stability factor with the variations in free layer thickness, the diameter of the MTJ pillars, and the processing routes.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3354695</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropy ; Atomistic simulations ; Constraint modelling ; Curie temperature ; data retention ; Diameters ; embedded nonvolatile memories (eNVM) ; Magnetic anisotropy ; Magnetic tunneling ; Magnetization ; Parameter identification ; Perpendicular magnetic anisotropy ; Random access memory ; Semiconductor device modeling ; spin-transfer-torque magneto-resistive random access memories (STT-MRAM) ; Stability analysis ; Thermal stability ; thermal stability factor ; Thickness ; Tunnel junctions</subject><ispartof>IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1886-1892</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ea6e35b6cefef87d3426a1c04848644963b66a60b6a44a6a1eae84517d0802c43</citedby><cites>FETCH-LOGICAL-c292t-ea6e35b6cefef87d3426a1c04848644963b66a60b6a44a6a1eae84517d0802c43</cites><orcidid>0000-0002-1696-3480 ; 0009-0006-6005-4475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10415369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10415369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Talapatra, Abhishek</creatorcontrib><creatorcontrib>Weisheit, Martin</creatorcontrib><creatorcontrib>Muller, Johannes</creatorcontrib><creatorcontrib>Mansueto, Marco</creatorcontrib><creatorcontrib>Hazen, Daniel Sanchez</creatorcontrib><creatorcontrib>Komma, Venkata Siva</creatorcontrib><creatorcontrib>Zaka, Alban</creatorcontrib><title>Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the easy axis at real temperatures. The reported modeling methodology has been validated against the hardware (HW) data of GlobalFoundries on the 22FDX technology node. We have clearly explained the routes for proper estimation of the input parameters along with the identification of important tuning parameters in the model. The model is based on a single effective free layer approximation of the magnetic tunnel junction (MTJ) and captures the variations of the thermal stability factor with the variations in free layer thickness, the diameter of the MTJ pillars, and the processing routes.</description><subject>Anisotropy</subject><subject>Atomistic simulations</subject><subject>Constraint modelling</subject><subject>Curie temperature</subject><subject>data retention</subject><subject>Diameters</subject><subject>embedded nonvolatile memories (eNVM)</subject><subject>Magnetic anisotropy</subject><subject>Magnetic tunneling</subject><subject>Magnetization</subject><subject>Parameter identification</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Random access memory</subject><subject>Semiconductor device modeling</subject><subject>spin-transfer-torque magneto-resistive random access memories (STT-MRAM)</subject><subject>Stability analysis</subject><subject>Thermal stability</subject><subject>thermal stability factor</subject><subject>Thickness</subject><subject>Tunnel junctions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXho4nmxX1u2R4KgJhATWM-bbncWSpYttsWE_94SPHiZyWTemzf5IfRIyYhSol7K2euIESZGnOdCqvwKDWiejzMlhbxGA0JokSle8Ft0F8IujVIINkB-6RrobL_BS4hb17jObU64dR6XW_B73eF11LXtbDzhuTYxLWyP14dUSq_70EJSOv99BLzUmx6iy1YQbIj2B_BK943b44kxEEIK2DtvIdyjm1Z3AR7--hB9zWfl9D1bfL59TCeLzDDFYgZaAs9raaCFthg3XDCpqSGiEEX6XUleS6klqaUWQqcVaChETscNKQgzgg_R8-Xuwbv0X4jVzh19nyIrpjiXJKFRSUUuKuNdCB7a6uDtXvtTRUl1JlslstWZbPVHNlmeLhYLAP_kguZcKv4LN3t1gA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Talapatra, Abhishek</creator><creator>Weisheit, Martin</creator><creator>Muller, Johannes</creator><creator>Mansueto, Marco</creator><creator>Hazen, Daniel Sanchez</creator><creator>Komma, Venkata Siva</creator><creator>Zaka, Alban</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1696-3480</orcidid><orcidid>https://orcid.org/0009-0006-6005-4475</orcidid></search><sort><creationdate>20240301</creationdate><title>Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories</title><author>Talapatra, Abhishek ; Weisheit, Martin ; Muller, Johannes ; Mansueto, Marco ; Hazen, Daniel Sanchez ; Komma, Venkata Siva ; Zaka, Alban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ea6e35b6cefef87d3426a1c04848644963b66a60b6a44a6a1eae84517d0802c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Atomistic simulations</topic><topic>Constraint modelling</topic><topic>Curie temperature</topic><topic>data retention</topic><topic>Diameters</topic><topic>embedded nonvolatile memories (eNVM)</topic><topic>Magnetic anisotropy</topic><topic>Magnetic tunneling</topic><topic>Magnetization</topic><topic>Parameter identification</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Random access memory</topic><topic>Semiconductor device modeling</topic><topic>spin-transfer-torque magneto-resistive random access memories (STT-MRAM)</topic><topic>Stability analysis</topic><topic>Thermal stability</topic><topic>thermal stability factor</topic><topic>Thickness</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talapatra, Abhishek</creatorcontrib><creatorcontrib>Weisheit, Martin</creatorcontrib><creatorcontrib>Muller, Johannes</creatorcontrib><creatorcontrib>Mansueto, Marco</creatorcontrib><creatorcontrib>Hazen, Daniel Sanchez</creatorcontrib><creatorcontrib>Komma, Venkata Siva</creatorcontrib><creatorcontrib>Zaka, Alban</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Talapatra, Abhishek</au><au>Weisheit, Martin</au><au>Muller, Johannes</au><au>Mansueto, Marco</au><au>Hazen, Daniel Sanchez</au><au>Komma, Venkata Siva</au><au>Zaka, Alban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>1886</spage><epage>1892</epage><pages>1886-1892</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the easy axis at real temperatures. The reported modeling methodology has been validated against the hardware (HW) data of GlobalFoundries on the 22FDX technology node. We have clearly explained the routes for proper estimation of the input parameters along with the identification of important tuning parameters in the model. The model is based on a single effective free layer approximation of the magnetic tunnel junction (MTJ) and captures the variations of the thermal stability factor with the variations in free layer thickness, the diameter of the MTJ pillars, and the processing routes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3354695</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1696-3480</orcidid><orcidid>https://orcid.org/0009-0006-6005-4475</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1886-1892 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_10415369 |
source | IEEE Electronic Library (IEL) |
subjects | Anisotropy Atomistic simulations Constraint modelling Curie temperature data retention Diameters embedded nonvolatile memories (eNVM) Magnetic anisotropy Magnetic tunneling Magnetization Parameter identification Perpendicular magnetic anisotropy Random access memory Semiconductor device modeling spin-transfer-torque magneto-resistive random access memories (STT-MRAM) Stability analysis Thermal stability thermal stability factor Thickness Tunnel junctions |
title | Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Methodology%20for%20Thermal%20Stability%20Factor%20in%20Spin%20Transfer%20Torque%20Magneto-Resistive%20Random%20Access%20Memories&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Talapatra,%20Abhishek&rft.date=2024-03-01&rft.volume=71&rft.issue=3&rft.spage=1886&rft.epage=1892&rft.pages=1886-1892&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3354695&rft_dat=%3Cproquest_RIE%3E2933609649%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933609649&rft_id=info:pmid/&rft_ieee_id=10415369&rfr_iscdi=true |