Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories

This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-03, Vol.71 (3), p.1886-1892
Hauptverfasser: Talapatra, Abhishek, Weisheit, Martin, Muller, Johannes, Mansueto, Marco, Hazen, Daniel Sanchez, Komma, Venkata Siva, Zaka, Alban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1892
container_issue 3
container_start_page 1886
container_title IEEE transactions on electron devices
container_volume 71
creator Talapatra, Abhishek
Weisheit, Martin
Muller, Johannes
Mansueto, Marco
Hazen, Daniel Sanchez
Komma, Venkata Siva
Zaka, Alban
description This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the easy axis at real temperatures. The reported modeling methodology has been validated against the hardware (HW) data of GlobalFoundries on the 22FDX technology node. We have clearly explained the routes for proper estimation of the input parameters along with the identification of important tuning parameters in the model. The model is based on a single effective free layer approximation of the magnetic tunnel junction (MTJ) and captures the variations of the thermal stability factor with the variations in free layer thickness, the diameter of the MTJ pillars, and the processing routes.
doi_str_mv 10.1109/TED.2024.3354695
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10415369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10415369</ieee_id><sourcerecordid>2933609649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ea6e35b6cefef87d3426a1c04848644963b66a60b6a44a6a1eae84517d0802c43</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYjePXho4nmxX1u2R4KgJhATWM-bbncWSpYttsWE_94SPHiZyWTemzf5IfRIyYhSol7K2euIESZGnOdCqvwKDWiejzMlhbxGA0JokSle8Ft0F8IujVIINkB-6RrobL_BS4hb17jObU64dR6XW_B73eF11LXtbDzhuTYxLWyP14dUSq_70EJSOv99BLzUmx6iy1YQbIj2B_BK943b44kxEEIK2DtvIdyjm1Z3AR7--hB9zWfl9D1bfL59TCeLzDDFYgZaAs9raaCFthg3XDCpqSGiEEX6XUleS6klqaUWQqcVaChETscNKQgzgg_R8-Xuwbv0X4jVzh19nyIrpjiXJKFRSUUuKuNdCB7a6uDtXvtTRUl1JlslstWZbPVHNlmeLhYLAP_kguZcKv4LN3t1gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933609649</pqid></control><display><type>article</type><title>Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories</title><source>IEEE Electronic Library (IEL)</source><creator>Talapatra, Abhishek ; Weisheit, Martin ; Muller, Johannes ; Mansueto, Marco ; Hazen, Daniel Sanchez ; Komma, Venkata Siva ; Zaka, Alban</creator><creatorcontrib>Talapatra, Abhishek ; Weisheit, Martin ; Muller, Johannes ; Mansueto, Marco ; Hazen, Daniel Sanchez ; Komma, Venkata Siva ; Zaka, Alban</creatorcontrib><description>This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the easy axis at real temperatures. The reported modeling methodology has been validated against the hardware (HW) data of GlobalFoundries on the 22FDX technology node. We have clearly explained the routes for proper estimation of the input parameters along with the identification of important tuning parameters in the model. The model is based on a single effective free layer approximation of the magnetic tunnel junction (MTJ) and captures the variations of the thermal stability factor with the variations in free layer thickness, the diameter of the MTJ pillars, and the processing routes.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3354695</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropy ; Atomistic simulations ; Constraint modelling ; Curie temperature ; data retention ; Diameters ; embedded nonvolatile memories (eNVM) ; Magnetic anisotropy ; Magnetic tunneling ; Magnetization ; Parameter identification ; Perpendicular magnetic anisotropy ; Random access memory ; Semiconductor device modeling ; spin-transfer-torque magneto-resistive random access memories (STT-MRAM) ; Stability analysis ; Thermal stability ; thermal stability factor ; Thickness ; Tunnel junctions</subject><ispartof>IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1886-1892</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ea6e35b6cefef87d3426a1c04848644963b66a60b6a44a6a1eae84517d0802c43</citedby><cites>FETCH-LOGICAL-c292t-ea6e35b6cefef87d3426a1c04848644963b66a60b6a44a6a1eae84517d0802c43</cites><orcidid>0000-0002-1696-3480 ; 0009-0006-6005-4475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10415369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10415369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Talapatra, Abhishek</creatorcontrib><creatorcontrib>Weisheit, Martin</creatorcontrib><creatorcontrib>Muller, Johannes</creatorcontrib><creatorcontrib>Mansueto, Marco</creatorcontrib><creatorcontrib>Hazen, Daniel Sanchez</creatorcontrib><creatorcontrib>Komma, Venkata Siva</creatorcontrib><creatorcontrib>Zaka, Alban</creatorcontrib><title>Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the easy axis at real temperatures. The reported modeling methodology has been validated against the hardware (HW) data of GlobalFoundries on the 22FDX technology node. We have clearly explained the routes for proper estimation of the input parameters along with the identification of important tuning parameters in the model. The model is based on a single effective free layer approximation of the magnetic tunnel junction (MTJ) and captures the variations of the thermal stability factor with the variations in free layer thickness, the diameter of the MTJ pillars, and the processing routes.</description><subject>Anisotropy</subject><subject>Atomistic simulations</subject><subject>Constraint modelling</subject><subject>Curie temperature</subject><subject>data retention</subject><subject>Diameters</subject><subject>embedded nonvolatile memories (eNVM)</subject><subject>Magnetic anisotropy</subject><subject>Magnetic tunneling</subject><subject>Magnetization</subject><subject>Parameter identification</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Random access memory</subject><subject>Semiconductor device modeling</subject><subject>spin-transfer-torque magneto-resistive random access memories (STT-MRAM)</subject><subject>Stability analysis</subject><subject>Thermal stability</subject><subject>thermal stability factor</subject><subject>Thickness</subject><subject>Tunnel junctions</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxRujiYjePXho4nmxX1u2R4KgJhATWM-bbncWSpYttsWE_94SPHiZyWTemzf5IfRIyYhSol7K2euIESZGnOdCqvwKDWiejzMlhbxGA0JokSle8Ft0F8IujVIINkB-6RrobL_BS4hb17jObU64dR6XW_B73eF11LXtbDzhuTYxLWyP14dUSq_70EJSOv99BLzUmx6iy1YQbIj2B_BK943b44kxEEIK2DtvIdyjm1Z3AR7--hB9zWfl9D1bfL59TCeLzDDFYgZaAs9raaCFthg3XDCpqSGiEEX6XUleS6klqaUWQqcVaChETscNKQgzgg_R8-Xuwbv0X4jVzh19nyIrpjiXJKFRSUUuKuNdCB7a6uDtXvtTRUl1JlslstWZbPVHNlmeLhYLAP_kguZcKv4LN3t1gA</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Talapatra, Abhishek</creator><creator>Weisheit, Martin</creator><creator>Muller, Johannes</creator><creator>Mansueto, Marco</creator><creator>Hazen, Daniel Sanchez</creator><creator>Komma, Venkata Siva</creator><creator>Zaka, Alban</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1696-3480</orcidid><orcidid>https://orcid.org/0009-0006-6005-4475</orcidid></search><sort><creationdate>20240301</creationdate><title>Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories</title><author>Talapatra, Abhishek ; Weisheit, Martin ; Muller, Johannes ; Mansueto, Marco ; Hazen, Daniel Sanchez ; Komma, Venkata Siva ; Zaka, Alban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ea6e35b6cefef87d3426a1c04848644963b66a60b6a44a6a1eae84517d0802c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropy</topic><topic>Atomistic simulations</topic><topic>Constraint modelling</topic><topic>Curie temperature</topic><topic>data retention</topic><topic>Diameters</topic><topic>embedded nonvolatile memories (eNVM)</topic><topic>Magnetic anisotropy</topic><topic>Magnetic tunneling</topic><topic>Magnetization</topic><topic>Parameter identification</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Random access memory</topic><topic>Semiconductor device modeling</topic><topic>spin-transfer-torque magneto-resistive random access memories (STT-MRAM)</topic><topic>Stability analysis</topic><topic>Thermal stability</topic><topic>thermal stability factor</topic><topic>Thickness</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talapatra, Abhishek</creatorcontrib><creatorcontrib>Weisheit, Martin</creatorcontrib><creatorcontrib>Muller, Johannes</creatorcontrib><creatorcontrib>Mansueto, Marco</creatorcontrib><creatorcontrib>Hazen, Daniel Sanchez</creatorcontrib><creatorcontrib>Komma, Venkata Siva</creatorcontrib><creatorcontrib>Zaka, Alban</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Talapatra, Abhishek</au><au>Weisheit, Martin</au><au>Muller, Johannes</au><au>Mansueto, Marco</au><au>Hazen, Daniel Sanchez</au><au>Komma, Venkata Siva</au><au>Zaka, Alban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>1886</spage><epage>1892</epage><pages>1886-1892</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>This article presents systematic pathways to model the thermal stability factor for magneto-resistive random access memories using atomistic simulations. The model involves constraint Monte Carlo solver to estimate the change in anisotropy energy as a function of the angle of magnetization from the easy axis at real temperatures. The reported modeling methodology has been validated against the hardware (HW) data of GlobalFoundries on the 22FDX technology node. We have clearly explained the routes for proper estimation of the input parameters along with the identification of important tuning parameters in the model. The model is based on a single effective free layer approximation of the magnetic tunnel junction (MTJ) and captures the variations of the thermal stability factor with the variations in free layer thickness, the diameter of the MTJ pillars, and the processing routes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3354695</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1696-3480</orcidid><orcidid>https://orcid.org/0009-0006-6005-4475</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-03, Vol.71 (3), p.1886-1892
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_10415369
source IEEE Electronic Library (IEL)
subjects Anisotropy
Atomistic simulations
Constraint modelling
Curie temperature
data retention
Diameters
embedded nonvolatile memories (eNVM)
Magnetic anisotropy
Magnetic tunneling
Magnetization
Parameter identification
Perpendicular magnetic anisotropy
Random access memory
Semiconductor device modeling
spin-transfer-torque magneto-resistive random access memories (STT-MRAM)
Stability analysis
Thermal stability
thermal stability factor
Thickness
Tunnel junctions
title Modeling Methodology for Thermal Stability Factor in Spin Transfer Torque Magneto-Resistive Random Access Memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Methodology%20for%20Thermal%20Stability%20Factor%20in%20Spin%20Transfer%20Torque%20Magneto-Resistive%20Random%20Access%20Memories&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Talapatra,%20Abhishek&rft.date=2024-03-01&rft.volume=71&rft.issue=3&rft.spage=1886&rft.epage=1892&rft.pages=1886-1892&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3354695&rft_dat=%3Cproquest_RIE%3E2933609649%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933609649&rft_id=info:pmid/&rft_ieee_id=10415369&rfr_iscdi=true