Learning probabilistic models for optimal visual servo control of dynamic manipulation

We present an experiment in sequential visual servo control of a dynamic manipulation task with unknown equations of motion and feedback from an uncalibrated camera. Our algorithm constructs a model of a Markov decision process (MDP) by means of grounding states in observed trajectories, and uses th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nikovski, D., Nourbakhsh, I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1073 vol.1
container_issue
container_start_page 1068
container_title
container_volume 1
creator Nikovski, D.
Nourbakhsh, I.
description We present an experiment in sequential visual servo control of a dynamic manipulation task with unknown equations of motion and feedback from an uncalibrated camera. Our algorithm constructs a model of a Markov decision process (MDP) by means of grounding states in observed trajectories, and uses the model to find a control policy based on visual input, which maximizes a prespecified optimal control criterion balancing performance and control effort.
doi_str_mv 10.1109/IRDS.2002.1041533
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_ieee_primary_1041533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1041533</ieee_id><sourcerecordid>15672236</sourcerecordid><originalsourceid>FETCH-LOGICAL-i178t-4cc417c0baf7f068cff9c77fa72f3f8887f1f2986d3cc42919b31b3be560371e3</originalsourceid><addsrcrecordid>eNpFkEtLxDAUhQMiqOP8AHGTjcvWPNomWcr4GigIvrZDmuZKJE1K0hmYf2-lgmdzFue7l3sPQleUlJQSdbt9vX8rGSGspKSiNecn6IIISbjgSooztM75m8yqqpordY4-W6tTcOELjyl2unPe5ckZPMTe-owhJhzHyQ3a44PL-9myTYeITQxTih5HwP0x6OF3RAc37r2eXAyX6BS0z3b95yv08fjwvnku2pen7eauLRwVcioqYyoqDOk0CCCNNADKCAFaMOAgpRRAgSnZ9HwmmaKq47Tjna2b-SNq-QrdLHtHnY32kHQwLu_GNF-cjjtaN4Ix3szc9cI5a-1_vFTEfwA4lF3H</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Learning probabilistic models for optimal visual servo control of dynamic manipulation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Nikovski, D. ; Nourbakhsh, I.</creator><creatorcontrib>Nikovski, D. ; Nourbakhsh, I.</creatorcontrib><description>We present an experiment in sequential visual servo control of a dynamic manipulation task with unknown equations of motion and feedback from an uncalibrated camera. Our algorithm constructs a model of a Markov decision process (MDP) by means of grounding states in observed trajectories, and uses the model to find a control policy based on visual input, which maximizes a prespecified optimal control criterion balancing performance and control effort.</description><identifier>ISBN: 0780373987</identifier><identifier>ISBN: 9780780373983</identifier><identifier>DOI: 10.1109/IRDS.2002.1041533</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Adaptive control ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; Cost function ; Exact sciences and technology ; Kinematics ; Manipulator dynamics ; Motion control ; Optimal control ; Pattern recognition. Digital image processing. Computational geometry ; Robot sensing systems ; Robotics ; Servomechanisms ; Servosystems</subject><ispartof>IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, Vol.1, p.1068-1073 vol.1</ispartof><rights>2004 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1041533$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1041533$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15672236$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikovski, D.</creatorcontrib><creatorcontrib>Nourbakhsh, I.</creatorcontrib><title>Learning probabilistic models for optimal visual servo control of dynamic manipulation</title><title>IEEE/RSJ International Conference on Intelligent Robots and Systems</title><addtitle>IRDS</addtitle><description>We present an experiment in sequential visual servo control of a dynamic manipulation task with unknown equations of motion and feedback from an uncalibrated camera. Our algorithm constructs a model of a Markov decision process (MDP) by means of grounding states in observed trajectories, and uses the model to find a control policy based on visual input, which maximizes a prespecified optimal control criterion balancing performance and control effort.</description><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Cost function</subject><subject>Exact sciences and technology</subject><subject>Kinematics</subject><subject>Manipulator dynamics</subject><subject>Motion control</subject><subject>Optimal control</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robot sensing systems</subject><subject>Robotics</subject><subject>Servomechanisms</subject><subject>Servosystems</subject><isbn>0780373987</isbn><isbn>9780780373983</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLxDAUhQMiqOP8AHGTjcvWPNomWcr4GigIvrZDmuZKJE1K0hmYf2-lgmdzFue7l3sPQleUlJQSdbt9vX8rGSGspKSiNecn6IIISbjgSooztM75m8yqqpordY4-W6tTcOELjyl2unPe5ckZPMTe-owhJhzHyQ3a44PL-9myTYeITQxTih5HwP0x6OF3RAc37r2eXAyX6BS0z3b95yv08fjwvnku2pen7eauLRwVcioqYyoqDOk0CCCNNADKCAFaMOAgpRRAgSnZ9HwmmaKq47Tjna2b-SNq-QrdLHtHnY32kHQwLu_GNF-cjjtaN4Ix3szc9cI5a-1_vFTEfwA4lF3H</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Nikovski, D.</creator><creator>Nourbakhsh, I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2002</creationdate><title>Learning probabilistic models for optimal visual servo control of dynamic manipulation</title><author>Nikovski, D. ; Nourbakhsh, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i178t-4cc417c0baf7f068cff9c77fa72f3f8887f1f2986d3cc42919b31b3be560371e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Cost function</topic><topic>Exact sciences and technology</topic><topic>Kinematics</topic><topic>Manipulator dynamics</topic><topic>Motion control</topic><topic>Optimal control</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robot sensing systems</topic><topic>Robotics</topic><topic>Servomechanisms</topic><topic>Servosystems</topic><toplevel>online_resources</toplevel><creatorcontrib>Nikovski, D.</creatorcontrib><creatorcontrib>Nourbakhsh, I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nikovski, D.</au><au>Nourbakhsh, I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Learning probabilistic models for optimal visual servo control of dynamic manipulation</atitle><btitle>IEEE/RSJ International Conference on Intelligent Robots and Systems</btitle><stitle>IRDS</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>1068</spage><epage>1073 vol.1</epage><pages>1068-1073 vol.1</pages><isbn>0780373987</isbn><isbn>9780780373983</isbn><abstract>We present an experiment in sequential visual servo control of a dynamic manipulation task with unknown equations of motion and feedback from an uncalibrated camera. Our algorithm constructs a model of a Markov decision process (MDP) by means of grounding states in observed trajectories, and uses the model to find a control policy based on visual input, which maximizes a prespecified optimal control criterion balancing performance and control effort.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/IRDS.2002.1041533</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780373987
ispartof IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, Vol.1, p.1068-1073 vol.1
issn
language eng
recordid cdi_ieee_primary_1041533
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Control systems
Control theory. Systems
Cost function
Exact sciences and technology
Kinematics
Manipulator dynamics
Motion control
Optimal control
Pattern recognition. Digital image processing. Computational geometry
Robot sensing systems
Robotics
Servomechanisms
Servosystems
title Learning probabilistic models for optimal visual servo control of dynamic manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Learning%20probabilistic%20models%20for%20optimal%20visual%20servo%20control%20of%20dynamic%20manipulation&rft.btitle=IEEE/RSJ%20International%20Conference%20on%20Intelligent%20Robots%20and%20Systems&rft.au=Nikovski,%20D.&rft.date=2002&rft.volume=1&rft.spage=1068&rft.epage=1073%20vol.1&rft.pages=1068-1073%20vol.1&rft.isbn=0780373987&rft.isbn_list=9780780373983&rft_id=info:doi/10.1109/IRDS.2002.1041533&rft_dat=%3Cpascalfrancis_6IE%3E15672236%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1041533&rfr_iscdi=true