Multi-Agent Reinforcement Learning Based Uplink OFDMA for IEEE 802.11ax Networks
In the IEEE 802.11ax Wireless Local Area Networks (WLANs), Orthogonal Frequency Division Multiple Access (OFDMA) has been applied to enable the high-throughput WLAN amendment. However, with the growth of the number of devices, it is difficult for the Access Point (AP) to schedule uplink transmission...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-08, Vol.23 (8), p.8868-8882 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8882 |
---|---|
container_issue | 8 |
container_start_page | 8868 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Han, Mingqi Sun, Xinghua Zhan, Wen Gao, Yayu Jiang, Yuan |
description | In the IEEE 802.11ax Wireless Local Area Networks (WLANs), Orthogonal Frequency Division Multiple Access (OFDMA) has been applied to enable the high-throughput WLAN amendment. However, with the growth of the number of devices, it is difficult for the Access Point (AP) to schedule uplink transmissions, which calls for an efficient access mechanism in the OFDMA uplink system. Based on Multi-Agent Proximal Policy Optimization (MAPPO), we propose a Mean-Field Multi-Agent Proximal Policy Optimization (MFMAPPO) algorithm to improve the throughput and guarantee the fairness. Motivated by the Mean-Field games (MFGs) theory, a novel global state and action design are proposed to ensure the convergence of MFMAPPO in the massive access scenario. The Multi-Critic Single-Policy (MCSP) architecture is deployed in the proposed MFMAPPO so that each agent can learn the optimal channel access strategy to improve the throughput while satisfying fairness requirement. Extensive simulation experiments are performed to show that the MFMAPPO algorithm 1) has low computational complexity that increases linearly with respect to the number of stations 2) achieves nearly optimal throughput and fairness performance in the massive access scenario, 3) can adapt to various diverse and dynamic traffic conditions without retraining, as well as the traffic condition different from training traffic. |
doi_str_mv | 10.1109/TWC.2024.3355276 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10413951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10413951</ieee_id><sourcerecordid>3092924568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-da5b22951979c58d0afc897fe6b43b1ca20eeb2510b20150710a5b2d48464b513</originalsourceid><addsrcrecordid>eNpNkEtPwkAUhSdGExHdu3AxievinVcfS8SiJCDGQFxOpu0tKY8WZ0rQf-80sHB1H_nOPTeHkHsGA8YgeVp8jQYcuBwIoRSPwgvSY0rFAecyvux6EQbM76_JjXNrABaFSvXIx-ywbatguMK6pZ9Y1WVjc9x10xSNrat6RZ-Nw4Iu99uq3tD5-GU2pJ6ikzRNaQzc-5sf-o7tsbEbd0uuSrN1eHeufbIcp4vRWzCdv05Gw2mQc6naoDAq4zxRLImSXMUFmDKPk6jEMJMiY7nhgJhxxSDjwBREDDpFIWMZykwx0SePp7t723wf0LV63Rxs7S21gIQn3iWMPQUnKreNcxZLvbfVzthfzUB3uWmfm-5y0-fcvOThJKkQ8R8umfDvij8KzWYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092924568</pqid></control><display><type>article</type><title>Multi-Agent Reinforcement Learning Based Uplink OFDMA for IEEE 802.11ax Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Mingqi ; Sun, Xinghua ; Zhan, Wen ; Gao, Yayu ; Jiang, Yuan</creator><creatorcontrib>Han, Mingqi ; Sun, Xinghua ; Zhan, Wen ; Gao, Yayu ; Jiang, Yuan</creatorcontrib><description>In the IEEE 802.11ax Wireless Local Area Networks (WLANs), Orthogonal Frequency Division Multiple Access (OFDMA) has been applied to enable the high-throughput WLAN amendment. However, with the growth of the number of devices, it is difficult for the Access Point (AP) to schedule uplink transmissions, which calls for an efficient access mechanism in the OFDMA uplink system. Based on Multi-Agent Proximal Policy Optimization (MAPPO), we propose a Mean-Field Multi-Agent Proximal Policy Optimization (MFMAPPO) algorithm to improve the throughput and guarantee the fairness. Motivated by the Mean-Field games (MFGs) theory, a novel global state and action design are proposed to ensure the convergence of MFMAPPO in the massive access scenario. The Multi-Critic Single-Policy (MCSP) architecture is deployed in the proposed MFMAPPO so that each agent can learn the optimal channel access strategy to improve the throughput while satisfying fairness requirement. Extensive simulation experiments are performed to show that the MFMAPPO algorithm 1) has low computational complexity that increases linearly with respect to the number of stations 2) achieves nearly optimal throughput and fairness performance in the massive access scenario, 3) can adapt to various diverse and dynamic traffic conditions without retraining, as well as the traffic condition different from training traffic.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3355276</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computational complexity ; Frequency division multiple access ; Heuristic algorithms ; IEEE 802.11ax Standard ; Local area networks ; mean-field reinforcement learning ; multi-agent reinforcement learning ; multi-objective reinforcement learning ; Multiagent systems ; Multiple access ; Optimization ; Orthogonal Frequency Division Multiplexing ; Sun ; Throughput ; Traffic ; Uplink ; Uplinking ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2024-08, Vol.23 (8), p.8868-8882</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-da5b22951979c58d0afc897fe6b43b1ca20eeb2510b20150710a5b2d48464b513</cites><orcidid>0000-0003-0621-1469 ; 0000-0002-0061-7321 ; 0000-0002-3129-7893 ; 0000-0002-8036-9689 ; 0000-0003-4307-0562</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10413951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10413951$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Mingqi</creatorcontrib><creatorcontrib>Sun, Xinghua</creatorcontrib><creatorcontrib>Zhan, Wen</creatorcontrib><creatorcontrib>Gao, Yayu</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><title>Multi-Agent Reinforcement Learning Based Uplink OFDMA for IEEE 802.11ax Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In the IEEE 802.11ax Wireless Local Area Networks (WLANs), Orthogonal Frequency Division Multiple Access (OFDMA) has been applied to enable the high-throughput WLAN amendment. However, with the growth of the number of devices, it is difficult for the Access Point (AP) to schedule uplink transmissions, which calls for an efficient access mechanism in the OFDMA uplink system. Based on Multi-Agent Proximal Policy Optimization (MAPPO), we propose a Mean-Field Multi-Agent Proximal Policy Optimization (MFMAPPO) algorithm to improve the throughput and guarantee the fairness. Motivated by the Mean-Field games (MFGs) theory, a novel global state and action design are proposed to ensure the convergence of MFMAPPO in the massive access scenario. The Multi-Critic Single-Policy (MCSP) architecture is deployed in the proposed MFMAPPO so that each agent can learn the optimal channel access strategy to improve the throughput while satisfying fairness requirement. Extensive simulation experiments are performed to show that the MFMAPPO algorithm 1) has low computational complexity that increases linearly with respect to the number of stations 2) achieves nearly optimal throughput and fairness performance in the massive access scenario, 3) can adapt to various diverse and dynamic traffic conditions without retraining, as well as the traffic condition different from training traffic.</description><subject>Algorithms</subject><subject>Computational complexity</subject><subject>Frequency division multiple access</subject><subject>Heuristic algorithms</subject><subject>IEEE 802.11ax Standard</subject><subject>Local area networks</subject><subject>mean-field reinforcement learning</subject><subject>multi-agent reinforcement learning</subject><subject>multi-objective reinforcement learning</subject><subject>Multiagent systems</subject><subject>Multiple access</subject><subject>Optimization</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Sun</subject><subject>Throughput</subject><subject>Traffic</subject><subject>Uplink</subject><subject>Uplinking</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPwkAUhSdGExHdu3AxievinVcfS8SiJCDGQFxOpu0tKY8WZ0rQf-80sHB1H_nOPTeHkHsGA8YgeVp8jQYcuBwIoRSPwgvSY0rFAecyvux6EQbM76_JjXNrABaFSvXIx-ywbatguMK6pZ9Y1WVjc9x10xSNrat6RZ-Nw4Iu99uq3tD5-GU2pJ6ikzRNaQzc-5sf-o7tsbEbd0uuSrN1eHeufbIcp4vRWzCdv05Gw2mQc6naoDAq4zxRLImSXMUFmDKPk6jEMJMiY7nhgJhxxSDjwBREDDpFIWMZykwx0SePp7t723wf0LV63Rxs7S21gIQn3iWMPQUnKreNcxZLvbfVzthfzUB3uWmfm-5y0-fcvOThJKkQ8R8umfDvij8KzWYA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Han, Mingqi</creator><creator>Sun, Xinghua</creator><creator>Zhan, Wen</creator><creator>Gao, Yayu</creator><creator>Jiang, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0621-1469</orcidid><orcidid>https://orcid.org/0000-0002-0061-7321</orcidid><orcidid>https://orcid.org/0000-0002-3129-7893</orcidid><orcidid>https://orcid.org/0000-0002-8036-9689</orcidid><orcidid>https://orcid.org/0000-0003-4307-0562</orcidid></search><sort><creationdate>20240801</creationdate><title>Multi-Agent Reinforcement Learning Based Uplink OFDMA for IEEE 802.11ax Networks</title><author>Han, Mingqi ; Sun, Xinghua ; Zhan, Wen ; Gao, Yayu ; Jiang, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-da5b22951979c58d0afc897fe6b43b1ca20eeb2510b20150710a5b2d48464b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computational complexity</topic><topic>Frequency division multiple access</topic><topic>Heuristic algorithms</topic><topic>IEEE 802.11ax Standard</topic><topic>Local area networks</topic><topic>mean-field reinforcement learning</topic><topic>multi-agent reinforcement learning</topic><topic>multi-objective reinforcement learning</topic><topic>Multiagent systems</topic><topic>Multiple access</topic><topic>Optimization</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Sun</topic><topic>Throughput</topic><topic>Traffic</topic><topic>Uplink</topic><topic>Uplinking</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Mingqi</creatorcontrib><creatorcontrib>Sun, Xinghua</creatorcontrib><creatorcontrib>Zhan, Wen</creatorcontrib><creatorcontrib>Gao, Yayu</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Mingqi</au><au>Sun, Xinghua</au><au>Zhan, Wen</au><au>Gao, Yayu</au><au>Jiang, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Agent Reinforcement Learning Based Uplink OFDMA for IEEE 802.11ax Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>23</volume><issue>8</issue><spage>8868</spage><epage>8882</epage><pages>8868-8882</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In the IEEE 802.11ax Wireless Local Area Networks (WLANs), Orthogonal Frequency Division Multiple Access (OFDMA) has been applied to enable the high-throughput WLAN amendment. However, with the growth of the number of devices, it is difficult for the Access Point (AP) to schedule uplink transmissions, which calls for an efficient access mechanism in the OFDMA uplink system. Based on Multi-Agent Proximal Policy Optimization (MAPPO), we propose a Mean-Field Multi-Agent Proximal Policy Optimization (MFMAPPO) algorithm to improve the throughput and guarantee the fairness. Motivated by the Mean-Field games (MFGs) theory, a novel global state and action design are proposed to ensure the convergence of MFMAPPO in the massive access scenario. The Multi-Critic Single-Policy (MCSP) architecture is deployed in the proposed MFMAPPO so that each agent can learn the optimal channel access strategy to improve the throughput while satisfying fairness requirement. Extensive simulation experiments are performed to show that the MFMAPPO algorithm 1) has low computational complexity that increases linearly with respect to the number of stations 2) achieves nearly optimal throughput and fairness performance in the massive access scenario, 3) can adapt to various diverse and dynamic traffic conditions without retraining, as well as the traffic condition different from training traffic.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3355276</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0621-1469</orcidid><orcidid>https://orcid.org/0000-0002-0061-7321</orcidid><orcidid>https://orcid.org/0000-0002-3129-7893</orcidid><orcidid>https://orcid.org/0000-0002-8036-9689</orcidid><orcidid>https://orcid.org/0000-0003-4307-0562</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-08, Vol.23 (8), p.8868-8882 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_ieee_primary_10413951 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computational complexity Frequency division multiple access Heuristic algorithms IEEE 802.11ax Standard Local area networks mean-field reinforcement learning multi-agent reinforcement learning multi-objective reinforcement learning Multiagent systems Multiple access Optimization Orthogonal Frequency Division Multiplexing Sun Throughput Traffic Uplink Uplinking Wireless networks |
title | Multi-Agent Reinforcement Learning Based Uplink OFDMA for IEEE 802.11ax Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Agent%20Reinforcement%20Learning%20Based%20Uplink%20OFDMA%20for%20IEEE%20802.11ax%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Han,%20Mingqi&rft.date=2024-08-01&rft.volume=23&rft.issue=8&rft.spage=8868&rft.epage=8882&rft.pages=8868-8882&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3355276&rft_dat=%3Cproquest_RIE%3E3092924568%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092924568&rft_id=info:pmid/&rft_ieee_id=10413951&rfr_iscdi=true |