MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring
Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-04, Vol.24 (7), p.9437-9448 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9448 |
---|---|
container_issue | 7 |
container_start_page | 9437 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Xu, Wenqing Lu, Yixin Zhang, Ziang Zhou, Quan Zhao, Wenchao Yang, Runze Zhang, Long Yang, Limei Gao, Xin Pan, Gebo |
description | Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature coefficient of resistance (TCR) compatible with flexible techniques. Here, we present a new way that loads the semiconductor metal-organic framework (MOF) Ni3 (HHTP)2 onto the 2-D conductive nanomaterial MXene via in situ polymerization in aqueous solution to fabricate the thermosensitive nanocomposite for the RTS. Due to the wide bandgap of the MOF (0.45 eV), the RTS exhibits a high thermal sensitivity (TCR) of −3.1% \cdot ^{\circ }\text{C}\,\,^{\mathbf {-{1}}} . In addition, the RTS shows outstanding bending resistance over 1000 bending cycles because the MOF is anchored to the MXene tightly through coordination interaction, compensating for the weak bonding between the MOF particles. Besides, benefiting from the high electrical conductivity of MXene, the resistance of the MOF/MXene nanocomposite was reduced. The high sensitivity, excellent durability, high accuracy (0.1 °C), and fast response (1.2 s) enable the RTS to be applied in continuous body temperature and respiration rate monitoring. Therefore, we believe that the prepared RTS has promising application prospects in family medical systems and health surveillance. |
doi_str_mv | 10.1109/JSEN.2024.3355399 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10413333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10413333</ieee_id><sourcerecordid>3031399281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-56004fd3be9ccdb3b44567f3622d7f71a5cc643a24105900cc775047fbe6dad63</originalsourceid><addsrcrecordid>eNpVUd1KwzAULqLgnD6A4EXA625JkzTrpRPnD24DnbC7kqanmrEmNemGexzf1NTtQgOHnHC-H3K-KLokeEAIzoZPr3ezQYITNqCUc5plR1GPcD6KiWCj466nOGZULE-jM-9XGJNMcNGLvqfzyXC6BANoJo1Vtm6s1y2g1qLHunF2C2jxAa6Wa_QKJoz0Vrc7JE2JxmBKbd7RC3jtW2kUIFuhyRq-dLEONKgbcLLdOPilWoeqUGNb7v7NOqkg0ejw1tagFxnsp9bo1rogfx6dVHLt4eJw96O3yd3i9iF-nt8_3t48xyphaRvzFGNWlbSATKmyoAVjPBUVTZOkFJUgkiuVMioTRjDPMFZKCI6ZqApIS1mmtB9d73XDpz834Nt8ZTfOBMucYkrCSpMRCSiyRylnvXdQ5Y3TtXS7nOC8SyLvksi7JPJDEoFztedoAPiDZ4R25wd5nIf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031399281</pqid></control><display><type>article</type><title>MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Wenqing ; Lu, Yixin ; Zhang, Ziang ; Zhou, Quan ; Zhao, Wenchao ; Yang, Runze ; Zhang, Long ; Yang, Limei ; Gao, Xin ; Pan, Gebo</creator><creatorcontrib>Xu, Wenqing ; Lu, Yixin ; Zhang, Ziang ; Zhou, Quan ; Zhao, Wenchao ; Yang, Runze ; Zhang, Long ; Yang, Limei ; Gao, Xin ; Pan, Gebo</creatorcontrib><description>Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature coefficient of resistance (TCR) compatible with flexible techniques. Here, we present a new way that loads the semiconductor metal-organic framework (MOF) Ni3 (HHTP)2 onto the 2-D conductive nanomaterial MXene via in situ polymerization in aqueous solution to fabricate the thermosensitive nanocomposite for the RTS. Due to the wide bandgap of the MOF (0.45 eV), the RTS exhibits a high thermal sensitivity (TCR) of −3.1%<inline-formula> <tex-math notation="LaTeX">\cdot ^{\circ }\text{C}\,\,^{\mathbf {-{1}}} </tex-math></inline-formula>. In addition, the RTS shows outstanding bending resistance over 1000 bending cycles because the MOF is anchored to the MXene tightly through coordination interaction, compensating for the weak bonding between the MOF particles. Besides, benefiting from the high electrical conductivity of MXene, the resistance of the MOF/MXene nanocomposite was reduced. The high sensitivity, excellent durability, high accuracy (0.1 °C), and fast response (1.2 s) enable the RTS to be applied in continuous body temperature and respiration rate monitoring. Therefore, we believe that the prepared RTS has promising application prospects in family medical systems and health surveillance.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3355399</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aqueous solutions ; Bending ; Body temperature ; Bonding strength ; Electrical resistivity ; Flexible temperature sensor ; High temperature ; Immune system ; metal-organic framework (MOF) ; Metal-organic frameworks ; Monitoring ; MXene ; MXenes ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Respiration ; Sensitivity ; Sensors ; temperature coefficient of resistance (TCR) ; Temperature measurement ; Temperature sensors ; Thermal resistance ; thermosensitive nanocomposite</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.9437-9448</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-56004fd3be9ccdb3b44567f3622d7f71a5cc643a24105900cc775047fbe6dad63</cites><orcidid>0009-0007-6966-5755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10413333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10413333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Wenqing</creatorcontrib><creatorcontrib>Lu, Yixin</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Yang, Runze</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Yang, Limei</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Pan, Gebo</creatorcontrib><title>MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature coefficient of resistance (TCR) compatible with flexible techniques. Here, we present a new way that loads the semiconductor metal-organic framework (MOF) Ni3 (HHTP)2 onto the 2-D conductive nanomaterial MXene via in situ polymerization in aqueous solution to fabricate the thermosensitive nanocomposite for the RTS. Due to the wide bandgap of the MOF (0.45 eV), the RTS exhibits a high thermal sensitivity (TCR) of −3.1%<inline-formula> <tex-math notation="LaTeX">\cdot ^{\circ }\text{C}\,\,^{\mathbf {-{1}}} </tex-math></inline-formula>. In addition, the RTS shows outstanding bending resistance over 1000 bending cycles because the MOF is anchored to the MXene tightly through coordination interaction, compensating for the weak bonding between the MOF particles. Besides, benefiting from the high electrical conductivity of MXene, the resistance of the MOF/MXene nanocomposite was reduced. The high sensitivity, excellent durability, high accuracy (0.1 °C), and fast response (1.2 s) enable the RTS to be applied in continuous body temperature and respiration rate monitoring. Therefore, we believe that the prepared RTS has promising application prospects in family medical systems and health surveillance.</description><subject>Aqueous solutions</subject><subject>Bending</subject><subject>Body temperature</subject><subject>Bonding strength</subject><subject>Electrical resistivity</subject><subject>Flexible temperature sensor</subject><subject>High temperature</subject><subject>Immune system</subject><subject>metal-organic framework (MOF)</subject><subject>Metal-organic frameworks</subject><subject>Monitoring</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Respiration</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>temperature coefficient of resistance (TCR)</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thermal resistance</subject><subject>thermosensitive nanocomposite</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVUd1KwzAULqLgnD6A4EXA625JkzTrpRPnD24DnbC7kqanmrEmNemGexzf1NTtQgOHnHC-H3K-KLokeEAIzoZPr3ezQYITNqCUc5plR1GPcD6KiWCj466nOGZULE-jM-9XGJNMcNGLvqfzyXC6BANoJo1Vtm6s1y2g1qLHunF2C2jxAa6Wa_QKJoz0Vrc7JE2JxmBKbd7RC3jtW2kUIFuhyRq-dLEONKgbcLLdOPilWoeqUGNb7v7NOqkg0ejw1tagFxnsp9bo1rogfx6dVHLt4eJw96O3yd3i9iF-nt8_3t48xyphaRvzFGNWlbSATKmyoAVjPBUVTZOkFJUgkiuVMioTRjDPMFZKCI6ZqApIS1mmtB9d73XDpz834Nt8ZTfOBMucYkrCSpMRCSiyRylnvXdQ5Y3TtXS7nOC8SyLvksi7JPJDEoFztedoAPiDZ4R25wd5nIf0</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Xu, Wenqing</creator><creator>Lu, Yixin</creator><creator>Zhang, Ziang</creator><creator>Zhou, Quan</creator><creator>Zhao, Wenchao</creator><creator>Yang, Runze</creator><creator>Zhang, Long</creator><creator>Yang, Limei</creator><creator>Gao, Xin</creator><creator>Pan, Gebo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-6966-5755</orcidid></search><sort><creationdate>20240401</creationdate><title>MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring</title><author>Xu, Wenqing ; Lu, Yixin ; Zhang, Ziang ; Zhou, Quan ; Zhao, Wenchao ; Yang, Runze ; Zhang, Long ; Yang, Limei ; Gao, Xin ; Pan, Gebo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-56004fd3be9ccdb3b44567f3622d7f71a5cc643a24105900cc775047fbe6dad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous solutions</topic><topic>Bending</topic><topic>Body temperature</topic><topic>Bonding strength</topic><topic>Electrical resistivity</topic><topic>Flexible temperature sensor</topic><topic>High temperature</topic><topic>Immune system</topic><topic>metal-organic framework (MOF)</topic><topic>Metal-organic frameworks</topic><topic>Monitoring</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Respiration</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>temperature coefficient of resistance (TCR)</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thermal resistance</topic><topic>thermosensitive nanocomposite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenqing</creatorcontrib><creatorcontrib>Lu, Yixin</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Yang, Runze</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Yang, Limei</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Pan, Gebo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Wenqing</au><au>Lu, Yixin</au><au>Zhang, Ziang</au><au>Zhou, Quan</au><au>Zhao, Wenchao</au><au>Yang, Runze</au><au>Zhang, Long</au><au>Yang, Limei</au><au>Gao, Xin</au><au>Pan, Gebo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>9437</spage><epage>9448</epage><pages>9437-9448</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature coefficient of resistance (TCR) compatible with flexible techniques. Here, we present a new way that loads the semiconductor metal-organic framework (MOF) Ni3 (HHTP)2 onto the 2-D conductive nanomaterial MXene via in situ polymerization in aqueous solution to fabricate the thermosensitive nanocomposite for the RTS. Due to the wide bandgap of the MOF (0.45 eV), the RTS exhibits a high thermal sensitivity (TCR) of −3.1%<inline-formula> <tex-math notation="LaTeX">\cdot ^{\circ }\text{C}\,\,^{\mathbf {-{1}}} </tex-math></inline-formula>. In addition, the RTS shows outstanding bending resistance over 1000 bending cycles because the MOF is anchored to the MXene tightly through coordination interaction, compensating for the weak bonding between the MOF particles. Besides, benefiting from the high electrical conductivity of MXene, the resistance of the MOF/MXene nanocomposite was reduced. The high sensitivity, excellent durability, high accuracy (0.1 °C), and fast response (1.2 s) enable the RTS to be applied in continuous body temperature and respiration rate monitoring. Therefore, we believe that the prepared RTS has promising application prospects in family medical systems and health surveillance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3355399</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-6966-5755</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-04, Vol.24 (7), p.9437-9448 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_10413333 |
source | IEEE Electronic Library (IEL) |
subjects | Aqueous solutions Bending Body temperature Bonding strength Electrical resistivity Flexible temperature sensor High temperature Immune system metal-organic framework (MOF) Metal-organic frameworks Monitoring MXene MXenes Nanocomposites Nanomaterials Nanoparticles Respiration Sensitivity Sensors temperature coefficient of resistance (TCR) Temperature measurement Temperature sensors Thermal resistance thermosensitive nanocomposite |
title | MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF/MXene%20Nanocomposite%20to%20Improve%20Thermal%20Sensitivity%20and%20Bending%20Resistance%20of%20Flexible%20Temperature%20Sensor%20for%20Body%20Temperature%20and%20Respiration%20Rate%20Monitoring&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xu,%20Wenqing&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=9437&rft.epage=9448&rft.pages=9437-9448&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3355399&rft_dat=%3Cproquest_RIE%3E3031399281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031399281&rft_id=info:pmid/&rft_ieee_id=10413333&rfr_iscdi=true |