MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring

Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-04, Vol.24 (7), p.9437-9448
Hauptverfasser: Xu, Wenqing, Lu, Yixin, Zhang, Ziang, Zhou, Quan, Zhao, Wenchao, Yang, Runze, Zhang, Long, Yang, Limei, Gao, Xin, Pan, Gebo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9448
container_issue 7
container_start_page 9437
container_title IEEE sensors journal
container_volume 24
creator Xu, Wenqing
Lu, Yixin
Zhang, Ziang
Zhou, Quan
Zhao, Wenchao
Yang, Runze
Zhang, Long
Yang, Limei
Gao, Xin
Pan, Gebo
description Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature coefficient of resistance (TCR) compatible with flexible techniques. Here, we present a new way that loads the semiconductor metal-organic framework (MOF) Ni3 (HHTP)2 onto the 2-D conductive nanomaterial MXene via in situ polymerization in aqueous solution to fabricate the thermosensitive nanocomposite for the RTS. Due to the wide bandgap of the MOF (0.45 eV), the RTS exhibits a high thermal sensitivity (TCR) of −3.1% \cdot ^{\circ }\text{C}\,\,^{\mathbf {-{1}}} . In addition, the RTS shows outstanding bending resistance over 1000 bending cycles because the MOF is anchored to the MXene tightly through coordination interaction, compensating for the weak bonding between the MOF particles. Besides, benefiting from the high electrical conductivity of MXene, the resistance of the MOF/MXene nanocomposite was reduced. The high sensitivity, excellent durability, high accuracy (0.1 °C), and fast response (1.2 s) enable the RTS to be applied in continuous body temperature and respiration rate monitoring. Therefore, we believe that the prepared RTS has promising application prospects in family medical systems and health surveillance.
doi_str_mv 10.1109/JSEN.2024.3355399
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10413333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10413333</ieee_id><sourcerecordid>3031399281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-56004fd3be9ccdb3b44567f3622d7f71a5cc643a24105900cc775047fbe6dad63</originalsourceid><addsrcrecordid>eNpVUd1KwzAULqLgnD6A4EXA625JkzTrpRPnD24DnbC7kqanmrEmNemGexzf1NTtQgOHnHC-H3K-KLokeEAIzoZPr3ezQYITNqCUc5plR1GPcD6KiWCj466nOGZULE-jM-9XGJNMcNGLvqfzyXC6BANoJo1Vtm6s1y2g1qLHunF2C2jxAa6Wa_QKJoz0Vrc7JE2JxmBKbd7RC3jtW2kUIFuhyRq-dLEONKgbcLLdOPilWoeqUGNb7v7NOqkg0ejw1tagFxnsp9bo1rogfx6dVHLt4eJw96O3yd3i9iF-nt8_3t48xyphaRvzFGNWlbSATKmyoAVjPBUVTZOkFJUgkiuVMioTRjDPMFZKCI6ZqApIS1mmtB9d73XDpz834Nt8ZTfOBMucYkrCSpMRCSiyRylnvXdQ5Y3TtXS7nOC8SyLvksi7JPJDEoFztedoAPiDZ4R25wd5nIf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031399281</pqid></control><display><type>article</type><title>MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Wenqing ; Lu, Yixin ; Zhang, Ziang ; Zhou, Quan ; Zhao, Wenchao ; Yang, Runze ; Zhang, Long ; Yang, Limei ; Gao, Xin ; Pan, Gebo</creator><creatorcontrib>Xu, Wenqing ; Lu, Yixin ; Zhang, Ziang ; Zhou, Quan ; Zhao, Wenchao ; Yang, Runze ; Zhang, Long ; Yang, Limei ; Gao, Xin ; Pan, Gebo</creatorcontrib><description>Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature coefficient of resistance (TCR) compatible with flexible techniques. Here, we present a new way that loads the semiconductor metal-organic framework (MOF) Ni3 (HHTP)2 onto the 2-D conductive nanomaterial MXene via in situ polymerization in aqueous solution to fabricate the thermosensitive nanocomposite for the RTS. Due to the wide bandgap of the MOF (0.45 eV), the RTS exhibits a high thermal sensitivity (TCR) of −3.1%&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\cdot ^{\circ }\text{C}\,\,^{\mathbf {-{1}}} &lt;/tex-math&gt;&lt;/inline-formula&gt;. In addition, the RTS shows outstanding bending resistance over 1000 bending cycles because the MOF is anchored to the MXene tightly through coordination interaction, compensating for the weak bonding between the MOF particles. Besides, benefiting from the high electrical conductivity of MXene, the resistance of the MOF/MXene nanocomposite was reduced. The high sensitivity, excellent durability, high accuracy (0.1 °C), and fast response (1.2 s) enable the RTS to be applied in continuous body temperature and respiration rate monitoring. Therefore, we believe that the prepared RTS has promising application prospects in family medical systems and health surveillance.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3355399</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aqueous solutions ; Bending ; Body temperature ; Bonding strength ; Electrical resistivity ; Flexible temperature sensor ; High temperature ; Immune system ; metal-organic framework (MOF) ; Metal-organic frameworks ; Monitoring ; MXene ; MXenes ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Respiration ; Sensitivity ; Sensors ; temperature coefficient of resistance (TCR) ; Temperature measurement ; Temperature sensors ; Thermal resistance ; thermosensitive nanocomposite</subject><ispartof>IEEE sensors journal, 2024-04, Vol.24 (7), p.9437-9448</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-56004fd3be9ccdb3b44567f3622d7f71a5cc643a24105900cc775047fbe6dad63</cites><orcidid>0009-0007-6966-5755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10413333$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10413333$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Wenqing</creatorcontrib><creatorcontrib>Lu, Yixin</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Yang, Runze</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Yang, Limei</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Pan, Gebo</creatorcontrib><title>MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature coefficient of resistance (TCR) compatible with flexible techniques. Here, we present a new way that loads the semiconductor metal-organic framework (MOF) Ni3 (HHTP)2 onto the 2-D conductive nanomaterial MXene via in situ polymerization in aqueous solution to fabricate the thermosensitive nanocomposite for the RTS. Due to the wide bandgap of the MOF (0.45 eV), the RTS exhibits a high thermal sensitivity (TCR) of −3.1%&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\cdot ^{\circ }\text{C}\,\,^{\mathbf {-{1}}} &lt;/tex-math&gt;&lt;/inline-formula&gt;. In addition, the RTS shows outstanding bending resistance over 1000 bending cycles because the MOF is anchored to the MXene tightly through coordination interaction, compensating for the weak bonding between the MOF particles. Besides, benefiting from the high electrical conductivity of MXene, the resistance of the MOF/MXene nanocomposite was reduced. The high sensitivity, excellent durability, high accuracy (0.1 °C), and fast response (1.2 s) enable the RTS to be applied in continuous body temperature and respiration rate monitoring. Therefore, we believe that the prepared RTS has promising application prospects in family medical systems and health surveillance.</description><subject>Aqueous solutions</subject><subject>Bending</subject><subject>Body temperature</subject><subject>Bonding strength</subject><subject>Electrical resistivity</subject><subject>Flexible temperature sensor</subject><subject>High temperature</subject><subject>Immune system</subject><subject>metal-organic framework (MOF)</subject><subject>Metal-organic frameworks</subject><subject>Monitoring</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Respiration</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>temperature coefficient of resistance (TCR)</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thermal resistance</subject><subject>thermosensitive nanocomposite</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVUd1KwzAULqLgnD6A4EXA625JkzTrpRPnD24DnbC7kqanmrEmNemGexzf1NTtQgOHnHC-H3K-KLokeEAIzoZPr3ezQYITNqCUc5plR1GPcD6KiWCj466nOGZULE-jM-9XGJNMcNGLvqfzyXC6BANoJo1Vtm6s1y2g1qLHunF2C2jxAa6Wa_QKJoz0Vrc7JE2JxmBKbd7RC3jtW2kUIFuhyRq-dLEONKgbcLLdOPilWoeqUGNb7v7NOqkg0ejw1tagFxnsp9bo1rogfx6dVHLt4eJw96O3yd3i9iF-nt8_3t48xyphaRvzFGNWlbSATKmyoAVjPBUVTZOkFJUgkiuVMioTRjDPMFZKCI6ZqApIS1mmtB9d73XDpz834Nt8ZTfOBMucYkrCSpMRCSiyRylnvXdQ5Y3TtXS7nOC8SyLvksi7JPJDEoFztedoAPiDZ4R25wd5nIf0</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Xu, Wenqing</creator><creator>Lu, Yixin</creator><creator>Zhang, Ziang</creator><creator>Zhou, Quan</creator><creator>Zhao, Wenchao</creator><creator>Yang, Runze</creator><creator>Zhang, Long</creator><creator>Yang, Limei</creator><creator>Gao, Xin</creator><creator>Pan, Gebo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0007-6966-5755</orcidid></search><sort><creationdate>20240401</creationdate><title>MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring</title><author>Xu, Wenqing ; Lu, Yixin ; Zhang, Ziang ; Zhou, Quan ; Zhao, Wenchao ; Yang, Runze ; Zhang, Long ; Yang, Limei ; Gao, Xin ; Pan, Gebo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-56004fd3be9ccdb3b44567f3622d7f71a5cc643a24105900cc775047fbe6dad63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aqueous solutions</topic><topic>Bending</topic><topic>Body temperature</topic><topic>Bonding strength</topic><topic>Electrical resistivity</topic><topic>Flexible temperature sensor</topic><topic>High temperature</topic><topic>Immune system</topic><topic>metal-organic framework (MOF)</topic><topic>Metal-organic frameworks</topic><topic>Monitoring</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Respiration</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>temperature coefficient of resistance (TCR)</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thermal resistance</topic><topic>thermosensitive nanocomposite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenqing</creatorcontrib><creatorcontrib>Lu, Yixin</creatorcontrib><creatorcontrib>Zhang, Ziang</creatorcontrib><creatorcontrib>Zhou, Quan</creatorcontrib><creatorcontrib>Zhao, Wenchao</creatorcontrib><creatorcontrib>Yang, Runze</creatorcontrib><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Yang, Limei</creatorcontrib><creatorcontrib>Gao, Xin</creatorcontrib><creatorcontrib>Pan, Gebo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Wenqing</au><au>Lu, Yixin</au><au>Zhang, Ziang</au><au>Zhou, Quan</au><au>Zhao, Wenchao</au><au>Yang, Runze</au><au>Zhang, Long</au><au>Yang, Limei</au><au>Gao, Xin</au><au>Pan, Gebo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>24</volume><issue>7</issue><spage>9437</spage><epage>9448</epage><pages>9437-9448</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Flexible thermal-resistance temperature sensors (RTSs) have caught tremendous attention due to their lightweight, good portability, fast response, and simple fabrication. However, it still remains an enormous challenge to construct a continuous and stable thermosensitive film with a high-temperature coefficient of resistance (TCR) compatible with flexible techniques. Here, we present a new way that loads the semiconductor metal-organic framework (MOF) Ni3 (HHTP)2 onto the 2-D conductive nanomaterial MXene via in situ polymerization in aqueous solution to fabricate the thermosensitive nanocomposite for the RTS. Due to the wide bandgap of the MOF (0.45 eV), the RTS exhibits a high thermal sensitivity (TCR) of −3.1%&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\cdot ^{\circ }\text{C}\,\,^{\mathbf {-{1}}} &lt;/tex-math&gt;&lt;/inline-formula&gt;. In addition, the RTS shows outstanding bending resistance over 1000 bending cycles because the MOF is anchored to the MXene tightly through coordination interaction, compensating for the weak bonding between the MOF particles. Besides, benefiting from the high electrical conductivity of MXene, the resistance of the MOF/MXene nanocomposite was reduced. The high sensitivity, excellent durability, high accuracy (0.1 °C), and fast response (1.2 s) enable the RTS to be applied in continuous body temperature and respiration rate monitoring. Therefore, we believe that the prepared RTS has promising application prospects in family medical systems and health surveillance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3355399</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0007-6966-5755</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-04, Vol.24 (7), p.9437-9448
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_10413333
source IEEE Electronic Library (IEL)
subjects Aqueous solutions
Bending
Body temperature
Bonding strength
Electrical resistivity
Flexible temperature sensor
High temperature
Immune system
metal-organic framework (MOF)
Metal-organic frameworks
Monitoring
MXene
MXenes
Nanocomposites
Nanomaterials
Nanoparticles
Respiration
Sensitivity
Sensors
temperature coefficient of resistance (TCR)
Temperature measurement
Temperature sensors
Thermal resistance
thermosensitive nanocomposite
title MOF/MXene Nanocomposite to Improve Thermal Sensitivity and Bending Resistance of Flexible Temperature Sensor for Body Temperature and Respiration Rate Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF/MXene%20Nanocomposite%20to%20Improve%20Thermal%20Sensitivity%20and%20Bending%20Resistance%20of%20Flexible%20Temperature%20Sensor%20for%20Body%20Temperature%20and%20Respiration%20Rate%20Monitoring&rft.jtitle=IEEE%20sensors%20journal&rft.au=Xu,%20Wenqing&rft.date=2024-04-01&rft.volume=24&rft.issue=7&rft.spage=9437&rft.epage=9448&rft.pages=9437-9448&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3355399&rft_dat=%3Cproquest_RIE%3E3031399281%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3031399281&rft_id=info:pmid/&rft_ieee_id=10413333&rfr_iscdi=true