Robust image classification based on a non-causal hidden Markov Gauss mixture model
We propose a novel image classification method using a non-causal hidden Markov Gauss mixture model (HMGMM) We apply supervised learning assuming that the observation probability distribution given each class can be estimated using Gauss mixture vector quantization (GMVQ) designed using the generali...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!