Robust image classification based on a non-causal hidden Markov Gauss mixture model

We propose a novel image classification method using a non-causal hidden Markov Gauss mixture model (HMGMM) We apply supervised learning assuming that the observation probability distribution given each class can be estimated using Gauss mixture vector quantization (GMVQ) designed using the generali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kyungsuk Pyun, Chee Sun Won, Johan Lim, Gray, R.M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788 vol.3
container_issue
container_start_page 785
container_title
container_volume 3
creator Kyungsuk Pyun
Chee Sun Won
Johan Lim
Gray, R.M.
description We propose a novel image classification method using a non-causal hidden Markov Gauss mixture model (HMGMM) We apply supervised learning assuming that the observation probability distribution given each class can be estimated using Gauss mixture vector quantization (GMVQ) designed using the generalized Lloyd algorithm with a minimum discrimination information (MDI) distortion. The maximum a posteriori (MAP) hidden states in an Ising model are estimated by a stochastic EM algorithm. We demonstrate that HMGMM obtains better classification than several popular methods, including CART, LVQ, causal HMM, and multiresolution HMM, in terms of Bayes risk and the spatial homogeneity of the classified objects. A heuristic solution for the number of clusters achieves a robust image classification.
doi_str_mv 10.1109/ICIP.2002.1039089
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1039089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1039089</ieee_id><sourcerecordid>1039089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c153t-4bc12ec53f1d7d47c0635d5146e7684d81a673fe8d602c355da94c08ae4729da3</originalsourceid><addsrcrecordid>eNotkNlKA0EURBsXMIl-gPjSPzCxb-_zKEFjIKK4PIeb7jvaOotMTyT-vQPmqYqCU1DF2CWIOYAor1eL1dNcCiHnIFQpfHnEJlJ5KLzR5TGbCueFclZKe8ImYKQstPfijE1z_hwpAQom7OW52-7ywFOD78RDjTmnKgUcUtfyLWaKfDTI264tAu4y1vwjxUgtf8D-q_vhyzHMvEn7YdcTb7pI9Tk7rbDOdHHQGXu7u31d3Bfrx-VqcbMuAhg1FHobQFIwqoLoonZBWGWiAW3JWa-jB7ROVeSjFTIoYyKWOgiPpJ0sI6oZu_rvTUS0-e7HDf3v5nCG-gPMuFFO</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Robust image classification based on a non-causal hidden Markov Gauss mixture model</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kyungsuk Pyun ; Chee Sun Won ; Johan Lim ; Gray, R.M.</creator><creatorcontrib>Kyungsuk Pyun ; Chee Sun Won ; Johan Lim ; Gray, R.M.</creatorcontrib><description>We propose a novel image classification method using a non-causal hidden Markov Gauss mixture model (HMGMM) We apply supervised learning assuming that the observation probability distribution given each class can be estimated using Gauss mixture vector quantization (GMVQ) designed using the generalized Lloyd algorithm with a minimum discrimination information (MDI) distortion. The maximum a posteriori (MAP) hidden states in an Ising model are estimated by a stochastic EM algorithm. We demonstrate that HMGMM obtains better classification than several popular methods, including CART, LVQ, causal HMM, and multiresolution HMM, in terms of Bayes risk and the spatial homogeneity of the classified objects. A heuristic solution for the number of clusters achieves a robust image classification.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 0780376226</identifier><identifier>ISBN: 9780780376229</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2002.1039089</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Gaussian distribution ; Gaussian processes ; Hidden Markov models ; Image classification ; Probability distribution ; Robustness ; State estimation ; Supervised learning ; Vector quantization</subject><ispartof>Proceedings. International Conference on Image Processing, 2002, Vol.3, p.785-788 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c153t-4bc12ec53f1d7d47c0635d5146e7684d81a673fe8d602c355da94c08ae4729da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1039089$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1039089$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kyungsuk Pyun</creatorcontrib><creatorcontrib>Chee Sun Won</creatorcontrib><creatorcontrib>Johan Lim</creatorcontrib><creatorcontrib>Gray, R.M.</creatorcontrib><title>Robust image classification based on a non-causal hidden Markov Gauss mixture model</title><title>Proceedings. International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>We propose a novel image classification method using a non-causal hidden Markov Gauss mixture model (HMGMM) We apply supervised learning assuming that the observation probability distribution given each class can be estimated using Gauss mixture vector quantization (GMVQ) designed using the generalized Lloyd algorithm with a minimum discrimination information (MDI) distortion. The maximum a posteriori (MAP) hidden states in an Ising model are estimated by a stochastic EM algorithm. We demonstrate that HMGMM obtains better classification than several popular methods, including CART, LVQ, causal HMM, and multiresolution HMM, in terms of Bayes risk and the spatial homogeneity of the classified objects. A heuristic solution for the number of clusters achieves a robust image classification.</description><subject>Algorithm design and analysis</subject><subject>Gaussian distribution</subject><subject>Gaussian processes</subject><subject>Hidden Markov models</subject><subject>Image classification</subject><subject>Probability distribution</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Supervised learning</subject><subject>Vector quantization</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>0780376226</isbn><isbn>9780780376229</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkNlKA0EURBsXMIl-gPjSPzCxb-_zKEFjIKK4PIeb7jvaOotMTyT-vQPmqYqCU1DF2CWIOYAor1eL1dNcCiHnIFQpfHnEJlJ5KLzR5TGbCueFclZKe8ImYKQstPfijE1z_hwpAQom7OW52-7ywFOD78RDjTmnKgUcUtfyLWaKfDTI264tAu4y1vwjxUgtf8D-q_vhyzHMvEn7YdcTb7pI9Tk7rbDOdHHQGXu7u31d3Bfrx-VqcbMuAhg1FHobQFIwqoLoonZBWGWiAW3JWa-jB7ROVeSjFTIoYyKWOgiPpJ0sI6oZu_rvTUS0-e7HDf3v5nCG-gPMuFFO</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Kyungsuk Pyun</creator><creator>Chee Sun Won</creator><creator>Johan Lim</creator><creator>Gray, R.M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Robust image classification based on a non-causal hidden Markov Gauss mixture model</title><author>Kyungsuk Pyun ; Chee Sun Won ; Johan Lim ; Gray, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c153t-4bc12ec53f1d7d47c0635d5146e7684d81a673fe8d602c355da94c08ae4729da3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithm design and analysis</topic><topic>Gaussian distribution</topic><topic>Gaussian processes</topic><topic>Hidden Markov models</topic><topic>Image classification</topic><topic>Probability distribution</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Supervised learning</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Kyungsuk Pyun</creatorcontrib><creatorcontrib>Chee Sun Won</creatorcontrib><creatorcontrib>Johan Lim</creatorcontrib><creatorcontrib>Gray, R.M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kyungsuk Pyun</au><au>Chee Sun Won</au><au>Johan Lim</au><au>Gray, R.M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Robust image classification based on a non-causal hidden Markov Gauss mixture model</atitle><btitle>Proceedings. International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2002</date><risdate>2002</risdate><volume>3</volume><spage>785</spage><epage>788 vol.3</epage><pages>785-788 vol.3</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>0780376226</isbn><isbn>9780780376229</isbn><abstract>We propose a novel image classification method using a non-causal hidden Markov Gauss mixture model (HMGMM) We apply supervised learning assuming that the observation probability distribution given each class can be estimated using Gauss mixture vector quantization (GMVQ) designed using the generalized Lloyd algorithm with a minimum discrimination information (MDI) distortion. The maximum a posteriori (MAP) hidden states in an Ising model are estimated by a stochastic EM algorithm. We demonstrate that HMGMM obtains better classification than several popular methods, including CART, LVQ, causal HMM, and multiresolution HMM, in terms of Bayes risk and the spatial homogeneity of the classified objects. A heuristic solution for the number of clusters achieves a robust image classification.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2002.1039089</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof Proceedings. International Conference on Image Processing, 2002, Vol.3, p.785-788 vol.3
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_1039089
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Gaussian distribution
Gaussian processes
Hidden Markov models
Image classification
Probability distribution
Robustness
State estimation
Supervised learning
Vector quantization
title Robust image classification based on a non-causal hidden Markov Gauss mixture model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Robust%20image%20classification%20based%20on%20a%20non-causal%20hidden%20Markov%20Gauss%20mixture%20model&rft.btitle=Proceedings.%20International%20Conference%20on%20Image%20Processing&rft.au=Kyungsuk%20Pyun&rft.date=2002&rft.volume=3&rft.spage=785&rft.epage=788%20vol.3&rft.pages=785-788%20vol.3&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=0780376226&rft.isbn_list=9780780376229&rft_id=info:doi/10.1109/ICIP.2002.1039089&rft_dat=%3Cieee_6IE%3E1039089%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1039089&rfr_iscdi=true