Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach

The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on radar systems 2024, Vol.2, p.125-137
Hauptverfasser: Flandermeyer, Shane A., Mattingly, Rylee G., Metcalf, Justin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue
container_start_page 125
container_title IEEE transactions on radar systems
container_volume 2
creator Flandermeyer, Shane A.
Mattingly, Rylee G.
Metcalf, Justin G.
description The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compromises the quality of service for other users in the channel. This work presents a deep reinforcement learning (RL) approach to spectrum sharing that enables a pulse-agile radar to operate in heavily congested spectral environments. A cognitive agent dynamically adapts the radar waveform to trade off collision avoidance, bandwidth utilization, and distortion losses due to pulse-agile behavior. Unlike existing RL approaches, this method formulates waveform parameter selection as a continuous control task, significantly increasing the flexibility of the agent and making it possible to scale its behavior to wideband, high-resolution operation. The RL agent uses a recurrent attention-based neural network to select actions, making it suitable for parallelized, real-time implementation. The proposed algorithm makes minimal assumptions about the spectral environment or other users in the spectrum, and the performance of the approach is evaluated on over-the-air data collected from a USRP X310 software-defined radio (SDR) system. Through these experiments, it is shown that the RL approach provides a flexible method for solving multi-objective waveform design problems in dynamic, high-dimensional spectrum environments.
doi_str_mv 10.1109/TRS.2024.3353112
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10388474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10388474</ieee_id><sourcerecordid>10_1109_TRS_2024_3353112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624-4a171c45518bf8f86d6facfb591700e6de3b5227b10fcf75c3e8f5faf628b8183</originalsourceid><addsrcrecordid>eNpNkMFOAjEURRujiQTZu3DRHxh8bafT4o6gogmJCcO-6ZRXqIHOpDNj4t87CAtW7-bl3Ls4hDwymDIGs-fNupxy4PlUCCkY4zdkxLXgmRJS3V7lezJp228A4LOCSYARMa-IDV1jiL5ODo8YO7pCm2KIOzq86KLexdCFH6Rru7WJlg26LvVHWu5tGqAXOh-Y2IXY1337H1N9oPOmSbV1-wdy5-2hxcnljsnm_W2z-MhWX8vPxXyVuYLnWW6ZYi6XkunKa6-LbeGt85WcMQWAxRZFJTlXFQPvvJJOoPbSW19wXWmmxZjAedalum0TetOkcLTp1zAwJ0VmUGROisxF0VB5OlcCIl7hQutc5eIPuQpjSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Flandermeyer, Shane A. ; Mattingly, Rylee G. ; Metcalf, Justin G.</creator><creatorcontrib>Flandermeyer, Shane A. ; Mattingly, Rylee G. ; Metcalf, Justin G.</creatorcontrib><description>The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compromises the quality of service for other users in the channel. This work presents a deep reinforcement learning (RL) approach to spectrum sharing that enables a pulse-agile radar to operate in heavily congested spectral environments. A cognitive agent dynamically adapts the radar waveform to trade off collision avoidance, bandwidth utilization, and distortion losses due to pulse-agile behavior. Unlike existing RL approaches, this method formulates waveform parameter selection as a continuous control task, significantly increasing the flexibility of the agent and making it possible to scale its behavior to wideband, high-resolution operation. The RL agent uses a recurrent attention-based neural network to select actions, making it suitable for parallelized, real-time implementation. The proposed algorithm makes minimal assumptions about the spectral environment or other users in the spectrum, and the performance of the approach is evaluated on over-the-air data collected from a USRP X310 software-defined radio (SDR) system. Through these experiments, it is shown that the RL approach provides a flexible method for solving multi-objective waveform design problems in dynamic, high-dimensional spectrum environments.</description><identifier>ISSN: 2832-7357</identifier><identifier>EISSN: 2832-7357</identifier><identifier>DOI: 10.1109/TRS.2024.3353112</identifier><identifier>CODEN: ITRSBN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognitive radar ; Deep learning ; Interference ; Radar tracking ; Radio spectrum management ; Reinforcement learning ; Resource management ; spectrum sharing</subject><ispartof>IEEE transactions on radar systems, 2024, Vol.2, p.125-137</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c624-4a171c45518bf8f86d6facfb591700e6de3b5227b10fcf75c3e8f5faf628b8183</cites><orcidid>0000-0002-8971-6333 ; 0000-0002-5865-4504 ; 0009-0001-9395-5396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10388474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10388474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Flandermeyer, Shane A.</creatorcontrib><creatorcontrib>Mattingly, Rylee G.</creatorcontrib><creatorcontrib>Metcalf, Justin G.</creatorcontrib><title>Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach</title><title>IEEE transactions on radar systems</title><addtitle>TRS</addtitle><description>The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compromises the quality of service for other users in the channel. This work presents a deep reinforcement learning (RL) approach to spectrum sharing that enables a pulse-agile radar to operate in heavily congested spectral environments. A cognitive agent dynamically adapts the radar waveform to trade off collision avoidance, bandwidth utilization, and distortion losses due to pulse-agile behavior. Unlike existing RL approaches, this method formulates waveform parameter selection as a continuous control task, significantly increasing the flexibility of the agent and making it possible to scale its behavior to wideband, high-resolution operation. The RL agent uses a recurrent attention-based neural network to select actions, making it suitable for parallelized, real-time implementation. The proposed algorithm makes minimal assumptions about the spectral environment or other users in the spectrum, and the performance of the approach is evaluated on over-the-air data collected from a USRP X310 software-defined radio (SDR) system. Through these experiments, it is shown that the RL approach provides a flexible method for solving multi-objective waveform design problems in dynamic, high-dimensional spectrum environments.</description><subject>Cognitive radar</subject><subject>Deep learning</subject><subject>Interference</subject><subject>Radar tracking</subject><subject>Radio spectrum management</subject><subject>Reinforcement learning</subject><subject>Resource management</subject><subject>spectrum sharing</subject><issn>2832-7357</issn><issn>2832-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOAjEURRujiQTZu3DRHxh8bafT4o6gogmJCcO-6ZRXqIHOpDNj4t87CAtW7-bl3Ls4hDwymDIGs-fNupxy4PlUCCkY4zdkxLXgmRJS3V7lezJp228A4LOCSYARMa-IDV1jiL5ODo8YO7pCm2KIOzq86KLexdCFH6Rru7WJlg26LvVHWu5tGqAXOh-Y2IXY1337H1N9oPOmSbV1-wdy5-2hxcnljsnm_W2z-MhWX8vPxXyVuYLnWW6ZYi6XkunKa6-LbeGt85WcMQWAxRZFJTlXFQPvvJJOoPbSW19wXWmmxZjAedalum0TetOkcLTp1zAwJ0VmUGROisxF0VB5OlcCIl7hQutc5eIPuQpjSQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Flandermeyer, Shane A.</creator><creator>Mattingly, Rylee G.</creator><creator>Metcalf, Justin G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8971-6333</orcidid><orcidid>https://orcid.org/0000-0002-5865-4504</orcidid><orcidid>https://orcid.org/0009-0001-9395-5396</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach</title><author>Flandermeyer, Shane A. ; Mattingly, Rylee G. ; Metcalf, Justin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624-4a171c45518bf8f86d6facfb591700e6de3b5227b10fcf75c3e8f5faf628b8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cognitive radar</topic><topic>Deep learning</topic><topic>Interference</topic><topic>Radar tracking</topic><topic>Radio spectrum management</topic><topic>Reinforcement learning</topic><topic>Resource management</topic><topic>spectrum sharing</topic><toplevel>online_resources</toplevel><creatorcontrib>Flandermeyer, Shane A.</creatorcontrib><creatorcontrib>Mattingly, Rylee G.</creatorcontrib><creatorcontrib>Metcalf, Justin G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on radar systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flandermeyer, Shane A.</au><au>Mattingly, Rylee G.</au><au>Metcalf, Justin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach</atitle><jtitle>IEEE transactions on radar systems</jtitle><stitle>TRS</stitle><date>2024</date><risdate>2024</risdate><volume>2</volume><spage>125</spage><epage>137</epage><pages>125-137</pages><issn>2832-7357</issn><eissn>2832-7357</eissn><coden>ITRSBN</coden><abstract>The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compromises the quality of service for other users in the channel. This work presents a deep reinforcement learning (RL) approach to spectrum sharing that enables a pulse-agile radar to operate in heavily congested spectral environments. A cognitive agent dynamically adapts the radar waveform to trade off collision avoidance, bandwidth utilization, and distortion losses due to pulse-agile behavior. Unlike existing RL approaches, this method formulates waveform parameter selection as a continuous control task, significantly increasing the flexibility of the agent and making it possible to scale its behavior to wideband, high-resolution operation. The RL agent uses a recurrent attention-based neural network to select actions, making it suitable for parallelized, real-time implementation. The proposed algorithm makes minimal assumptions about the spectral environment or other users in the spectrum, and the performance of the approach is evaluated on over-the-air data collected from a USRP X310 software-defined radio (SDR) system. Through these experiments, it is shown that the RL approach provides a flexible method for solving multi-objective waveform design problems in dynamic, high-dimensional spectrum environments.</abstract><pub>IEEE</pub><doi>10.1109/TRS.2024.3353112</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8971-6333</orcidid><orcidid>https://orcid.org/0000-0002-5865-4504</orcidid><orcidid>https://orcid.org/0009-0001-9395-5396</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2832-7357
ispartof IEEE transactions on radar systems, 2024, Vol.2, p.125-137
issn 2832-7357
2832-7357
language eng
recordid cdi_ieee_primary_10388474
source IEEE Electronic Library (IEL)
subjects Cognitive radar
Deep learning
Interference
Radar tracking
Radio spectrum management
Reinforcement learning
Resource management
spectrum sharing
title Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning%20for%20Cognitive%20Radar%20Spectrum%20Sharing:%20A%20Continuous%20Control%20Approach&rft.jtitle=IEEE%20transactions%20on%20radar%20systems&rft.au=Flandermeyer,%20Shane%20A.&rft.date=2024&rft.volume=2&rft.spage=125&rft.epage=137&rft.pages=125-137&rft.issn=2832-7357&rft.eissn=2832-7357&rft.coden=ITRSBN&rft_id=info:doi/10.1109/TRS.2024.3353112&rft_dat=%3Ccrossref_RIE%3E10_1109_TRS_2024_3353112%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10388474&rfr_iscdi=true