Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach
The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on radar systems 2024, Vol.2, p.125-137 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | |
container_start_page | 125 |
container_title | IEEE transactions on radar systems |
container_volume | 2 |
creator | Flandermeyer, Shane A. Mattingly, Rylee G. Metcalf, Justin G. |
description | The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compromises the quality of service for other users in the channel. This work presents a deep reinforcement learning (RL) approach to spectrum sharing that enables a pulse-agile radar to operate in heavily congested spectral environments. A cognitive agent dynamically adapts the radar waveform to trade off collision avoidance, bandwidth utilization, and distortion losses due to pulse-agile behavior. Unlike existing RL approaches, this method formulates waveform parameter selection as a continuous control task, significantly increasing the flexibility of the agent and making it possible to scale its behavior to wideband, high-resolution operation. The RL agent uses a recurrent attention-based neural network to select actions, making it suitable for parallelized, real-time implementation. The proposed algorithm makes minimal assumptions about the spectral environment or other users in the spectrum, and the performance of the approach is evaluated on over-the-air data collected from a USRP X310 software-defined radio (SDR) system. Through these experiments, it is shown that the RL approach provides a flexible method for solving multi-objective waveform design problems in dynamic, high-dimensional spectrum environments. |
doi_str_mv | 10.1109/TRS.2024.3353112 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10388474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10388474</ieee_id><sourcerecordid>10_1109_TRS_2024_3353112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624-4a171c45518bf8f86d6facfb591700e6de3b5227b10fcf75c3e8f5faf628b8183</originalsourceid><addsrcrecordid>eNpNkMFOAjEURRujiQTZu3DRHxh8bafT4o6gogmJCcO-6ZRXqIHOpDNj4t87CAtW7-bl3Ls4hDwymDIGs-fNupxy4PlUCCkY4zdkxLXgmRJS3V7lezJp228A4LOCSYARMa-IDV1jiL5ODo8YO7pCm2KIOzq86KLexdCFH6Rru7WJlg26LvVHWu5tGqAXOh-Y2IXY1337H1N9oPOmSbV1-wdy5-2hxcnljsnm_W2z-MhWX8vPxXyVuYLnWW6ZYi6XkunKa6-LbeGt85WcMQWAxRZFJTlXFQPvvJJOoPbSW19wXWmmxZjAedalum0TetOkcLTp1zAwJ0VmUGROisxF0VB5OlcCIl7hQutc5eIPuQpjSQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Flandermeyer, Shane A. ; Mattingly, Rylee G. ; Metcalf, Justin G.</creator><creatorcontrib>Flandermeyer, Shane A. ; Mattingly, Rylee G. ; Metcalf, Justin G.</creatorcontrib><description>The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compromises the quality of service for other users in the channel. This work presents a deep reinforcement learning (RL) approach to spectrum sharing that enables a pulse-agile radar to operate in heavily congested spectral environments. A cognitive agent dynamically adapts the radar waveform to trade off collision avoidance, bandwidth utilization, and distortion losses due to pulse-agile behavior. Unlike existing RL approaches, this method formulates waveform parameter selection as a continuous control task, significantly increasing the flexibility of the agent and making it possible to scale its behavior to wideband, high-resolution operation. The RL agent uses a recurrent attention-based neural network to select actions, making it suitable for parallelized, real-time implementation. The proposed algorithm makes minimal assumptions about the spectral environment or other users in the spectrum, and the performance of the approach is evaluated on over-the-air data collected from a USRP X310 software-defined radio (SDR) system. Through these experiments, it is shown that the RL approach provides a flexible method for solving multi-objective waveform design problems in dynamic, high-dimensional spectrum environments.</description><identifier>ISSN: 2832-7357</identifier><identifier>EISSN: 2832-7357</identifier><identifier>DOI: 10.1109/TRS.2024.3353112</identifier><identifier>CODEN: ITRSBN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cognitive radar ; Deep learning ; Interference ; Radar tracking ; Radio spectrum management ; Reinforcement learning ; Resource management ; spectrum sharing</subject><ispartof>IEEE transactions on radar systems, 2024, Vol.2, p.125-137</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c624-4a171c45518bf8f86d6facfb591700e6de3b5227b10fcf75c3e8f5faf628b8183</cites><orcidid>0000-0002-8971-6333 ; 0000-0002-5865-4504 ; 0009-0001-9395-5396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10388474$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10388474$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Flandermeyer, Shane A.</creatorcontrib><creatorcontrib>Mattingly, Rylee G.</creatorcontrib><creatorcontrib>Metcalf, Justin G.</creatorcontrib><title>Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach</title><title>IEEE transactions on radar systems</title><addtitle>TRS</addtitle><description>The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compromises the quality of service for other users in the channel. This work presents a deep reinforcement learning (RL) approach to spectrum sharing that enables a pulse-agile radar to operate in heavily congested spectral environments. A cognitive agent dynamically adapts the radar waveform to trade off collision avoidance, bandwidth utilization, and distortion losses due to pulse-agile behavior. Unlike existing RL approaches, this method formulates waveform parameter selection as a continuous control task, significantly increasing the flexibility of the agent and making it possible to scale its behavior to wideband, high-resolution operation. The RL agent uses a recurrent attention-based neural network to select actions, making it suitable for parallelized, real-time implementation. The proposed algorithm makes minimal assumptions about the spectral environment or other users in the spectrum, and the performance of the approach is evaluated on over-the-air data collected from a USRP X310 software-defined radio (SDR) system. Through these experiments, it is shown that the RL approach provides a flexible method for solving multi-objective waveform design problems in dynamic, high-dimensional spectrum environments.</description><subject>Cognitive radar</subject><subject>Deep learning</subject><subject>Interference</subject><subject>Radar tracking</subject><subject>Radio spectrum management</subject><subject>Reinforcement learning</subject><subject>Resource management</subject><subject>spectrum sharing</subject><issn>2832-7357</issn><issn>2832-7357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOAjEURRujiQTZu3DRHxh8bafT4o6gogmJCcO-6ZRXqIHOpDNj4t87CAtW7-bl3Ls4hDwymDIGs-fNupxy4PlUCCkY4zdkxLXgmRJS3V7lezJp228A4LOCSYARMa-IDV1jiL5ODo8YO7pCm2KIOzq86KLexdCFH6Rru7WJlg26LvVHWu5tGqAXOh-Y2IXY1337H1N9oPOmSbV1-wdy5-2hxcnljsnm_W2z-MhWX8vPxXyVuYLnWW6ZYi6XkunKa6-LbeGt85WcMQWAxRZFJTlXFQPvvJJOoPbSW19wXWmmxZjAedalum0TetOkcLTp1zAwJ0VmUGROisxF0VB5OlcCIl7hQutc5eIPuQpjSQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Flandermeyer, Shane A.</creator><creator>Mattingly, Rylee G.</creator><creator>Metcalf, Justin G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8971-6333</orcidid><orcidid>https://orcid.org/0000-0002-5865-4504</orcidid><orcidid>https://orcid.org/0009-0001-9395-5396</orcidid></search><sort><creationdate>2024</creationdate><title>Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach</title><author>Flandermeyer, Shane A. ; Mattingly, Rylee G. ; Metcalf, Justin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624-4a171c45518bf8f86d6facfb591700e6de3b5227b10fcf75c3e8f5faf628b8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cognitive radar</topic><topic>Deep learning</topic><topic>Interference</topic><topic>Radar tracking</topic><topic>Radio spectrum management</topic><topic>Reinforcement learning</topic><topic>Resource management</topic><topic>spectrum sharing</topic><toplevel>online_resources</toplevel><creatorcontrib>Flandermeyer, Shane A.</creatorcontrib><creatorcontrib>Mattingly, Rylee G.</creatorcontrib><creatorcontrib>Metcalf, Justin G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on radar systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flandermeyer, Shane A.</au><au>Mattingly, Rylee G.</au><au>Metcalf, Justin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach</atitle><jtitle>IEEE transactions on radar systems</jtitle><stitle>TRS</stitle><date>2024</date><risdate>2024</risdate><volume>2</volume><spage>125</spage><epage>137</epage><pages>125-137</pages><issn>2832-7357</issn><eissn>2832-7357</eissn><coden>ITRSBN</coden><abstract>The growing demand for RF spectrum has placed considerable strain on radar systems, which must share limited spectrum resources with an ever-increasing number of devices. It is necessary to design radar systems with coexistence in mind so that the radar avoids harmful mutual interference that compromises the quality of service for other users in the channel. This work presents a deep reinforcement learning (RL) approach to spectrum sharing that enables a pulse-agile radar to operate in heavily congested spectral environments. A cognitive agent dynamically adapts the radar waveform to trade off collision avoidance, bandwidth utilization, and distortion losses due to pulse-agile behavior. Unlike existing RL approaches, this method formulates waveform parameter selection as a continuous control task, significantly increasing the flexibility of the agent and making it possible to scale its behavior to wideband, high-resolution operation. The RL agent uses a recurrent attention-based neural network to select actions, making it suitable for parallelized, real-time implementation. The proposed algorithm makes minimal assumptions about the spectral environment or other users in the spectrum, and the performance of the approach is evaluated on over-the-air data collected from a USRP X310 software-defined radio (SDR) system. Through these experiments, it is shown that the RL approach provides a flexible method for solving multi-objective waveform design problems in dynamic, high-dimensional spectrum environments.</abstract><pub>IEEE</pub><doi>10.1109/TRS.2024.3353112</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8971-6333</orcidid><orcidid>https://orcid.org/0000-0002-5865-4504</orcidid><orcidid>https://orcid.org/0009-0001-9395-5396</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2832-7357 |
ispartof | IEEE transactions on radar systems, 2024, Vol.2, p.125-137 |
issn | 2832-7357 2832-7357 |
language | eng |
recordid | cdi_ieee_primary_10388474 |
source | IEEE Electronic Library (IEL) |
subjects | Cognitive radar Deep learning Interference Radar tracking Radio spectrum management Reinforcement learning Resource management spectrum sharing |
title | Deep Reinforcement Learning for Cognitive Radar Spectrum Sharing: A Continuous Control Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A26%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Reinforcement%20Learning%20for%20Cognitive%20Radar%20Spectrum%20Sharing:%20A%20Continuous%20Control%20Approach&rft.jtitle=IEEE%20transactions%20on%20radar%20systems&rft.au=Flandermeyer,%20Shane%20A.&rft.date=2024&rft.volume=2&rft.spage=125&rft.epage=137&rft.pages=125-137&rft.issn=2832-7357&rft.eissn=2832-7357&rft.coden=ITRSBN&rft_id=info:doi/10.1109/TRS.2024.3353112&rft_dat=%3Ccrossref_RIE%3E10_1109_TRS_2024_3353112%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10388474&rfr_iscdi=true |