Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction
Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep net...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2024-05, Vol.43 (5), p.1866-1879 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1879 |
---|---|
container_issue | 5 |
container_start_page | 1866 |
container_title | IEEE transactions on medical imaging |
container_volume | 43 |
creator | Li, Zilong Gao, Qi Wu, Yaping Niu, Chuang Zhang, Junping Wang, Meiyun Wang, Ge Shan, Hongming |
description | Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net . |
doi_str_mv | 10.1109/TMI.2024.3351722 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10385220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10385220</ieee_id><sourcerecordid>3050304745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-15958f68ecb82a0a7e39c548b2c9f6e66a27f4f6832367a10caa20452ae821e43</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvHkQWvHjZOpkku4ngodSvQqsoFbyFNJ2FrW23ZncR_71bW0U8zTA878vwMHbMocs5mIvxaNBFQNkVQvEUcYe1uVI6RiVfd1kbMNUxQIItdlCWMwAuFZh91hKaGymMabOrp9pN4weqLqPv7bpYuHwZNYePIrxFWRGi_jgaUeXmUS9UeeZ8FT3TtPZVXiwP2V7m5iUdbWeHvdzejPv38fDxbtDvDWMvpK5irozSWaLJTzQ6cCkJ45XUE_QmSyhJHKaZbACBIkkdB-8cglToSCMnKTrsfNO7CsV7TWVlF3npaT53Syrq0qLhArQUmDTo2T90VtRh2XxnBSgQIFOpGgo2lA9FWQbK7CrkCxc-LQe7VmsbtXat1m7VNpHTbXE9WdD0N_DjsgFONkBORH_6hFaIIL4ADCJ5tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050304745</pqid></control><display><type>article</type><title>Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zilong ; Gao, Qi ; Wu, Yaping ; Niu, Chuang ; Zhang, Junping ; Wang, Meiyun ; Wang, Ge ; Shan, Hongming</creator><creatorcontrib>Li, Zilong ; Gao, Qi ; Wu, Yaping ; Niu, Chuang ; Zhang, Junping ; Wang, Meiyun ; Wang, Ge ; Shan, Hongming</creatorcontrib><description>Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net .</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3351722</identifier><identifier>PMID: 38194399</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computational efficiency ; Computed tomography ; Convolution ; Deep Learning ; Domains ; Dual-domain network ; Fourier Analysis ; Fourier network ; Fourier transforms ; Humans ; image post-processing ; Image Processing, Computer-Assisted - methods ; Image quality ; Image reconstruction ; Image restoration ; interpolation ; Mars ; Medical imaging ; metal artifact reduction ; Metals ; Metals - chemistry ; Phantoms, Imaging ; Prostheses and Implants ; State of the art ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE transactions on medical imaging, 2024-05, Vol.43 (5), p.1866-1879</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-15958f68ecb82a0a7e39c548b2c9f6e66a27f4f6832367a10caa20452ae821e43</citedby><cites>FETCH-LOGICAL-c348t-15958f68ecb82a0a7e39c548b2c9f6e66a27f4f6832367a10caa20452ae821e43</cites><orcidid>0000-0002-2979-5332 ; 0000-0002-2656-7705 ; 0009-0001-1955-3508 ; 0000-0002-5924-3360 ; 0009-0002-2106-8445 ; 0000-0002-3310-7803 ; 0000-0002-0604-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10385220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10385220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38194399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zilong</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Wu, Yaping</creatorcontrib><creatorcontrib>Niu, Chuang</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Wang, Meiyun</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><title>Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net .</description><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Computed tomography</subject><subject>Convolution</subject><subject>Deep Learning</subject><subject>Domains</subject><subject>Dual-domain network</subject><subject>Fourier Analysis</subject><subject>Fourier network</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>image post-processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>interpolation</subject><subject>Mars</subject><subject>Medical imaging</subject><subject>metal artifact reduction</subject><subject>Metals</subject><subject>Metals - chemistry</subject><subject>Phantoms, Imaging</subject><subject>Prostheses and Implants</subject><subject>State of the art</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMotlbvHkQWvHjZOpkku4ngodSvQqsoFbyFNJ2FrW23ZncR_71bW0U8zTA878vwMHbMocs5mIvxaNBFQNkVQvEUcYe1uVI6RiVfd1kbMNUxQIItdlCWMwAuFZh91hKaGymMabOrp9pN4weqLqPv7bpYuHwZNYePIrxFWRGi_jgaUeXmUS9UeeZ8FT3TtPZVXiwP2V7m5iUdbWeHvdzejPv38fDxbtDvDWMvpK5irozSWaLJTzQ6cCkJ45XUE_QmSyhJHKaZbACBIkkdB-8cglToSCMnKTrsfNO7CsV7TWVlF3npaT53Syrq0qLhArQUmDTo2T90VtRh2XxnBSgQIFOpGgo2lA9FWQbK7CrkCxc-LQe7VmsbtXat1m7VNpHTbXE9WdD0N_DjsgFONkBORH_6hFaIIL4ADCJ5tA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Li, Zilong</creator><creator>Gao, Qi</creator><creator>Wu, Yaping</creator><creator>Niu, Chuang</creator><creator>Zhang, Junping</creator><creator>Wang, Meiyun</creator><creator>Wang, Ge</creator><creator>Shan, Hongming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2979-5332</orcidid><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0009-0001-1955-3508</orcidid><orcidid>https://orcid.org/0000-0002-5924-3360</orcidid><orcidid>https://orcid.org/0009-0002-2106-8445</orcidid><orcidid>https://orcid.org/0000-0002-3310-7803</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid></search><sort><creationdate>20240501</creationdate><title>Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction</title><author>Li, Zilong ; Gao, Qi ; Wu, Yaping ; Niu, Chuang ; Zhang, Junping ; Wang, Meiyun ; Wang, Ge ; Shan, Hongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-15958f68ecb82a0a7e39c548b2c9f6e66a27f4f6832367a10caa20452ae821e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Computed tomography</topic><topic>Convolution</topic><topic>Deep Learning</topic><topic>Domains</topic><topic>Dual-domain network</topic><topic>Fourier Analysis</topic><topic>Fourier network</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>image post-processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>interpolation</topic><topic>Mars</topic><topic>Medical imaging</topic><topic>metal artifact reduction</topic><topic>Metals</topic><topic>Metals - chemistry</topic><topic>Phantoms, Imaging</topic><topic>Prostheses and Implants</topic><topic>State of the art</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Zilong</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Wu, Yaping</creatorcontrib><creatorcontrib>Niu, Chuang</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Wang, Meiyun</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zilong</au><au>Gao, Qi</au><au>Wu, Yaping</au><au>Niu, Chuang</au><au>Zhang, Junping</au><au>Wang, Meiyun</au><au>Wang, Ge</au><au>Shan, Hongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>43</volume><issue>5</issue><spage>1866</spage><epage>1879</epage><pages>1866-1879</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38194399</pmid><doi>10.1109/TMI.2024.3351722</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2979-5332</orcidid><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0009-0001-1955-3508</orcidid><orcidid>https://orcid.org/0000-0002-5924-3360</orcidid><orcidid>https://orcid.org/0009-0002-2106-8445</orcidid><orcidid>https://orcid.org/0000-0002-3310-7803</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2024-05, Vol.43 (5), p.1866-1879 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_10385220 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computational efficiency Computed tomography Convolution Deep Learning Domains Dual-domain network Fourier Analysis Fourier network Fourier transforms Humans image post-processing Image Processing, Computer-Assisted - methods Image quality Image reconstruction Image restoration interpolation Mars Medical imaging metal artifact reduction Metals Metals - chemistry Phantoms, Imaging Prostheses and Implants State of the art Tomography, X-Ray Computed - methods |
title | Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quad-Net:%20Quad-Domain%20Network%20for%20CT%20Metal%20Artifact%20Reduction&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Zilong&rft.date=2024-05-01&rft.volume=43&rft.issue=5&rft.spage=1866&rft.epage=1879&rft.pages=1866-1879&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3351722&rft_dat=%3Cproquest_RIE%3E3050304745%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050304745&rft_id=info:pmid/38194399&rft_ieee_id=10385220&rfr_iscdi=true |