Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction

Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2024-05, Vol.43 (5), p.1866-1879
Hauptverfasser: Li, Zilong, Gao, Qi, Wu, Yaping, Niu, Chuang, Zhang, Junping, Wang, Meiyun, Wang, Ge, Shan, Hongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1879
container_issue 5
container_start_page 1866
container_title IEEE transactions on medical imaging
container_volume 43
creator Li, Zilong
Gao, Qi
Wu, Yaping
Niu, Chuang
Zhang, Junping
Wang, Meiyun
Wang, Ge
Shan, Hongming
description Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net .
doi_str_mv 10.1109/TMI.2024.3351722
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10385220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10385220</ieee_id><sourcerecordid>3050304745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-15958f68ecb82a0a7e39c548b2c9f6e66a27f4f6832367a10caa20452ae821e43</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMotlbvHkQWvHjZOpkku4ngodSvQqsoFbyFNJ2FrW23ZncR_71bW0U8zTA878vwMHbMocs5mIvxaNBFQNkVQvEUcYe1uVI6RiVfd1kbMNUxQIItdlCWMwAuFZh91hKaGymMabOrp9pN4weqLqPv7bpYuHwZNYePIrxFWRGi_jgaUeXmUS9UeeZ8FT3TtPZVXiwP2V7m5iUdbWeHvdzejPv38fDxbtDvDWMvpK5irozSWaLJTzQ6cCkJ45XUE_QmSyhJHKaZbACBIkkdB-8cglToSCMnKTrsfNO7CsV7TWVlF3npaT53Syrq0qLhArQUmDTo2T90VtRh2XxnBSgQIFOpGgo2lA9FWQbK7CrkCxc-LQe7VmsbtXat1m7VNpHTbXE9WdD0N_DjsgFONkBORH_6hFaIIL4ADCJ5tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050304745</pqid></control><display><type>article</type><title>Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zilong ; Gao, Qi ; Wu, Yaping ; Niu, Chuang ; Zhang, Junping ; Wang, Meiyun ; Wang, Ge ; Shan, Hongming</creator><creatorcontrib>Li, Zilong ; Gao, Qi ; Wu, Yaping ; Niu, Chuang ; Zhang, Junping ; Wang, Meiyun ; Wang, Ge ; Shan, Hongming</creatorcontrib><description>Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net .</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3351722</identifier><identifier>PMID: 38194399</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computational efficiency ; Computed tomography ; Convolution ; Deep Learning ; Domains ; Dual-domain network ; Fourier Analysis ; Fourier network ; Fourier transforms ; Humans ; image post-processing ; Image Processing, Computer-Assisted - methods ; Image quality ; Image reconstruction ; Image restoration ; interpolation ; Mars ; Medical imaging ; metal artifact reduction ; Metals ; Metals - chemistry ; Phantoms, Imaging ; Prostheses and Implants ; State of the art ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE transactions on medical imaging, 2024-05, Vol.43 (5), p.1866-1879</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-15958f68ecb82a0a7e39c548b2c9f6e66a27f4f6832367a10caa20452ae821e43</citedby><cites>FETCH-LOGICAL-c348t-15958f68ecb82a0a7e39c548b2c9f6e66a27f4f6832367a10caa20452ae821e43</cites><orcidid>0000-0002-2979-5332 ; 0000-0002-2656-7705 ; 0009-0001-1955-3508 ; 0000-0002-5924-3360 ; 0009-0002-2106-8445 ; 0000-0002-3310-7803 ; 0000-0002-0604-3197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10385220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10385220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38194399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zilong</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Wu, Yaping</creatorcontrib><creatorcontrib>Niu, Chuang</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Wang, Meiyun</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><title>Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net .</description><subject>Algorithms</subject><subject>Computational efficiency</subject><subject>Computed tomography</subject><subject>Convolution</subject><subject>Deep Learning</subject><subject>Domains</subject><subject>Dual-domain network</subject><subject>Fourier Analysis</subject><subject>Fourier network</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>image post-processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>interpolation</subject><subject>Mars</subject><subject>Medical imaging</subject><subject>metal artifact reduction</subject><subject>Metals</subject><subject>Metals - chemistry</subject><subject>Phantoms, Imaging</subject><subject>Prostheses and Implants</subject><subject>State of the art</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMotlbvHkQWvHjZOpkku4ngodSvQqsoFbyFNJ2FrW23ZncR_71bW0U8zTA878vwMHbMocs5mIvxaNBFQNkVQvEUcYe1uVI6RiVfd1kbMNUxQIItdlCWMwAuFZh91hKaGymMabOrp9pN4weqLqPv7bpYuHwZNYePIrxFWRGi_jgaUeXmUS9UeeZ8FT3TtPZVXiwP2V7m5iUdbWeHvdzejPv38fDxbtDvDWMvpK5irozSWaLJTzQ6cCkJ45XUE_QmSyhJHKaZbACBIkkdB-8cglToSCMnKTrsfNO7CsV7TWVlF3npaT53Syrq0qLhArQUmDTo2T90VtRh2XxnBSgQIFOpGgo2lA9FWQbK7CrkCxc-LQe7VmsbtXat1m7VNpHTbXE9WdD0N_DjsgFONkBORH_6hFaIIL4ADCJ5tA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Li, Zilong</creator><creator>Gao, Qi</creator><creator>Wu, Yaping</creator><creator>Niu, Chuang</creator><creator>Zhang, Junping</creator><creator>Wang, Meiyun</creator><creator>Wang, Ge</creator><creator>Shan, Hongming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2979-5332</orcidid><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0009-0001-1955-3508</orcidid><orcidid>https://orcid.org/0000-0002-5924-3360</orcidid><orcidid>https://orcid.org/0009-0002-2106-8445</orcidid><orcidid>https://orcid.org/0000-0002-3310-7803</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid></search><sort><creationdate>20240501</creationdate><title>Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction</title><author>Li, Zilong ; Gao, Qi ; Wu, Yaping ; Niu, Chuang ; Zhang, Junping ; Wang, Meiyun ; Wang, Ge ; Shan, Hongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-15958f68ecb82a0a7e39c548b2c9f6e66a27f4f6832367a10caa20452ae821e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computational efficiency</topic><topic>Computed tomography</topic><topic>Convolution</topic><topic>Deep Learning</topic><topic>Domains</topic><topic>Dual-domain network</topic><topic>Fourier Analysis</topic><topic>Fourier network</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>image post-processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>interpolation</topic><topic>Mars</topic><topic>Medical imaging</topic><topic>metal artifact reduction</topic><topic>Metals</topic><topic>Metals - chemistry</topic><topic>Phantoms, Imaging</topic><topic>Prostheses and Implants</topic><topic>State of the art</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Zilong</creatorcontrib><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Wu, Yaping</creatorcontrib><creatorcontrib>Niu, Chuang</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Wang, Meiyun</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><creatorcontrib>Shan, Hongming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zilong</au><au>Gao, Qi</au><au>Wu, Yaping</au><au>Niu, Chuang</au><au>Zhang, Junping</au><au>Wang, Meiyun</au><au>Wang, Ge</au><au>Shan, Hongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>43</volume><issue>5</issue><spage>1866</spage><epage>1879</epage><pages>1866-1879</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Metal implants and other high-density objects in patients introduce severe streaking artifacts in CT images, compromising image quality and diagnostic performance. Although various methods were developed for CT metal artifact reduction over the past decades, including the latest dual-domain deep networks, remaining metal artifacts are still clinically challenging in many cases. Here we extend the state-of-the-art dual-domain deep network approach into a quad-domain counterpart so that all the features in the sinogram, image, and their corresponding Fourier domains are synergized to eliminate metal artifacts optimally without compromising structural subtleties. Our proposed quad-domain network for MAR, referred to as Quad-Net, takes little additional computational cost since the Fourier transform is highly efficient, and works across the four receptive fields to learn both global and local features as well as their relations. Specifically, we first design a Sinogram-Fourier Restoration Network (SFR-Net) in the sinogram domain and its Fourier space to faithfully inpaint metal-corrupted traces. Then, we couple SFR-Net with an Image-Fourier Refinement Network (IFR-Net) which takes both an image and its Fourier spectrum to improve a CT image reconstructed from the SFR-Net output using cross-domain contextual information. Quad-Net is trained on clinical datasets to minimize a composite loss function. Quad-Net does not require precise metal masks, which is of great importance in clinical practice. Our experimental results demonstrate the superiority of Quad-Net over the state-of-the-art MAR methods quantitatively, visually, and statistically. The Quad-Net code is publicly available at https://github.com/longzilicart/Quad-Net .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38194399</pmid><doi>10.1109/TMI.2024.3351722</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2979-5332</orcidid><orcidid>https://orcid.org/0000-0002-2656-7705</orcidid><orcidid>https://orcid.org/0009-0001-1955-3508</orcidid><orcidid>https://orcid.org/0000-0002-5924-3360</orcidid><orcidid>https://orcid.org/0009-0002-2106-8445</orcidid><orcidid>https://orcid.org/0000-0002-3310-7803</orcidid><orcidid>https://orcid.org/0000-0002-0604-3197</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-05, Vol.43 (5), p.1866-1879
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_10385220
source IEEE Electronic Library (IEL)
subjects Algorithms
Computational efficiency
Computed tomography
Convolution
Deep Learning
Domains
Dual-domain network
Fourier Analysis
Fourier network
Fourier transforms
Humans
image post-processing
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Image restoration
interpolation
Mars
Medical imaging
metal artifact reduction
Metals
Metals - chemistry
Phantoms, Imaging
Prostheses and Implants
State of the art
Tomography, X-Ray Computed - methods
title Quad-Net: Quad-Domain Network for CT Metal Artifact Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A12%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quad-Net:%20Quad-Domain%20Network%20for%20CT%20Metal%20Artifact%20Reduction&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Li,%20Zilong&rft.date=2024-05-01&rft.volume=43&rft.issue=5&rft.spage=1866&rft.epage=1879&rft.pages=1866-1879&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3351722&rft_dat=%3Cproquest_RIE%3E3050304745%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050304745&rft_id=info:pmid/38194399&rft_ieee_id=10385220&rfr_iscdi=true