Locally Recoverable Codes Over Zp s

Locally recoverable codes (LRCs) play a vital role in distributed storage systems where the failure or unavailability of storage devices is a common occurrence. The purpose of LRCs is to facilitate the repair processes required to recover lost or damaged data in such systems. A code C will be said...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2024-05, Vol.72 (5), p.2503-2518
Hauptverfasser: Kourani, Nasim Abdi, Khodaiemehr, Hassan, Nikmehr, Mohammad Javad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2518
container_issue 5
container_start_page 2503
container_title IEEE transactions on communications
container_volume 72
creator Kourani, Nasim Abdi
Khodaiemehr, Hassan
Nikmehr, Mohammad Javad
description Locally recoverable codes (LRCs) play a vital role in distributed storage systems where the failure or unavailability of storage devices is a common occurrence. The purpose of LRCs is to facilitate the repair processes required to recover lost or damaged data in such systems. A code C will be said \left ({r,\delta }\right) -LRC if for each i , the i th component of codewords have locality (r, \delta) , that is, there exists a punctured subcode of C with support containing i , whose length is at most r + \delta - 1 , and whose minimum distance is at least \delta . An (r, \delta) -LRC with locality (r, \delta) allows for the local recovery of any \delta -1 nodes by accessing information from r other nodes. In this paper, we present new constructions of \left ({r,\delta }\right) -LRCs, with 2\leq \delta \leq \frac {p-1}{t} over \mathbb {Z}_{p^{s}} , where t divides p-1 and t\neq p-1 . Initially, we provide generator matrices for \left ({r,2}\right) -LRCs, among which one instance is considered as Singleton-Type Bound (STB)-optimal, a notio
doi_str_mv 10.1109/TCOMM.2024.3351760
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10385182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10385182</ieee_id><sourcerecordid>10385182</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-1d0bbb08a3d0ea89f97dffdf6868a4d488a057653a7c07227cca2cc820356ba13</originalsourceid><addsrcrecordid>eNotzM1Kw0AUQOFZKFhrX0BcDLhOvDM3M3OzlKBWSAlIu3FT7vxBJJKSEaFvr6Crw7c5QtwqqJWC9mHfDbtdrUE3NaJRzsKFWAG0UFnn6Epcl_IBAA0grsR9PweeprN8S2H-Tgv7KclujqnI4Zfy_STLjbjMPJW0-e9aHJ6f9t226oeX1-6xr0YF9qtSEbz3QIwRElObWxdzjtmSJW5iQ8RgnDXILoDT2oXAOgTSgMZ6VrgWd3_fMaV0PC3jJy_nowIko0jjD1jnPAo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Locally Recoverable Codes Over Zp s</title><source>IEEE Electronic Library (IEL)</source><creator>Kourani, Nasim Abdi ; Khodaiemehr, Hassan ; Nikmehr, Mohammad Javad</creator><creatorcontrib>Kourani, Nasim Abdi ; Khodaiemehr, Hassan ; Nikmehr, Mohammad Javad</creatorcontrib><description><![CDATA[Locally recoverable codes (LRCs) play a vital role in distributed storage systems where the failure or unavailability of storage devices is a common occurrence. The purpose of LRCs is to facilitate the repair processes required to recover lost or damaged data in such systems. A code <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> will be said <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRC if for each <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>, the <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>th component of codewords have locality <inline-formula> <tex-math notation="LaTeX">(r, \delta) </tex-math></inline-formula>, that is, there exists a punctured subcode of <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> with support containing <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>, whose length is at most <inline-formula> <tex-math notation="LaTeX">r + \delta - 1 </tex-math></inline-formula>, and whose minimum distance is at least <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>. An <inline-formula> <tex-math notation="LaTeX">(r, \delta) </tex-math></inline-formula>-LRC with locality <inline-formula> <tex-math notation="LaTeX">(r, \delta) </tex-math></inline-formula> allows for the local recovery of any <inline-formula> <tex-math notation="LaTeX">\delta -1 </tex-math></inline-formula> nodes by accessing information from <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> other nodes. In this paper, we present new constructions of <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRCs, with <inline-formula> <tex-math notation="LaTeX">2\leq \delta \leq \frac {p-1}{t} </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> divides <inline-formula> <tex-math notation="LaTeX">p-1 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">t\neq p-1 </tex-math></inline-formula>. Initially, we provide generator matrices for <inline-formula> <tex-math notation="LaTeX">\left ({r,2}\right) </tex-math></inline-formula>-LRCs, among which one instance is considered as Singleton-Type Bound (STB)-optimal, a notion introduced in this paper. Also, we present a method for recovering an erased symbol in a codeword of our <inline-formula> <tex-math notation="LaTeX">\left ({r,2}\right) </tex-math></inline-formula>-LRC. For this aim, we use the polynomial interpolation over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula> proposed by Gopalan. Next, we present the parity-check matrices for another family of <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>, and construct two instances of STB-optimal <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRCs. To the best of our knowledge, this paper presents the first study on ring-based LRCs. The proposed LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula> exhibit certain design restrictions compared to LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p^{s}} </tex-math></inline-formula>. However, we provide two advantages for LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>. First, we analyze Boolean circuits for arithmetic operations and demonstrate that the complexity of implementing multiplication in <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>, the operation with the highest cost in our algorithms, is considerably lower than in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p^{s}} </tex-math></inline-formula>. This highlights the superior performance of our LRCs in terms of implementation speed and cost-efficiency compared to their counterparts. Next, we offer an example illustrating that the Gray image of particular <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s+1}} </tex-math></inline-formula>-LRCs of length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> results in LRCs of length <inline-formula> <tex-math notation="LaTeX">np^{s} </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p} </tex-math></inline-formula>, which may not necessarily be linear. This introduces a novel class of LRCs, prompting further exploration of the connections between existing nonlinear LRCs in finite fields and linear ring-based LRCs.]]></description><identifier>ISSN: 0090-6778</identifier><identifier>DOI: 10.1109/TCOMM.2024.3351760</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>IEEE</publisher><subject>Codes ; distributed storage system ; erasure code ; Generators ; Hamming distances ; Interpolation ; Linear codes ; Locally recoverable code ; Maintenance engineering ; Symbols</subject><ispartof>IEEE transactions on communications, 2024-05, Vol.72 (5), p.2503-2518</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0489-8546 ; 0009-0003-3919-5538 ; 0000-0001-6912-3955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10385182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10385182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kourani, Nasim Abdi</creatorcontrib><creatorcontrib>Khodaiemehr, Hassan</creatorcontrib><creatorcontrib>Nikmehr, Mohammad Javad</creatorcontrib><title>Locally Recoverable Codes Over Zp s</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description><![CDATA[Locally recoverable codes (LRCs) play a vital role in distributed storage systems where the failure or unavailability of storage devices is a common occurrence. The purpose of LRCs is to facilitate the repair processes required to recover lost or damaged data in such systems. A code <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> will be said <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRC if for each <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>, the <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>th component of codewords have locality <inline-formula> <tex-math notation="LaTeX">(r, \delta) </tex-math></inline-formula>, that is, there exists a punctured subcode of <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> with support containing <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>, whose length is at most <inline-formula> <tex-math notation="LaTeX">r + \delta - 1 </tex-math></inline-formula>, and whose minimum distance is at least <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>. An <inline-formula> <tex-math notation="LaTeX">(r, \delta) </tex-math></inline-formula>-LRC with locality <inline-formula> <tex-math notation="LaTeX">(r, \delta) </tex-math></inline-formula> allows for the local recovery of any <inline-formula> <tex-math notation="LaTeX">\delta -1 </tex-math></inline-formula> nodes by accessing information from <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> other nodes. In this paper, we present new constructions of <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRCs, with <inline-formula> <tex-math notation="LaTeX">2\leq \delta \leq \frac {p-1}{t} </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> divides <inline-formula> <tex-math notation="LaTeX">p-1 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">t\neq p-1 </tex-math></inline-formula>. Initially, we provide generator matrices for <inline-formula> <tex-math notation="LaTeX">\left ({r,2}\right) </tex-math></inline-formula>-LRCs, among which one instance is considered as Singleton-Type Bound (STB)-optimal, a notion introduced in this paper. Also, we present a method for recovering an erased symbol in a codeword of our <inline-formula> <tex-math notation="LaTeX">\left ({r,2}\right) </tex-math></inline-formula>-LRC. For this aim, we use the polynomial interpolation over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula> proposed by Gopalan. Next, we present the parity-check matrices for another family of <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>, and construct two instances of STB-optimal <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRCs. To the best of our knowledge, this paper presents the first study on ring-based LRCs. The proposed LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula> exhibit certain design restrictions compared to LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p^{s}} </tex-math></inline-formula>. However, we provide two advantages for LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>. First, we analyze Boolean circuits for arithmetic operations and demonstrate that the complexity of implementing multiplication in <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>, the operation with the highest cost in our algorithms, is considerably lower than in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p^{s}} </tex-math></inline-formula>. This highlights the superior performance of our LRCs in terms of implementation speed and cost-efficiency compared to their counterparts. Next, we offer an example illustrating that the Gray image of particular <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s+1}} </tex-math></inline-formula>-LRCs of length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> results in LRCs of length <inline-formula> <tex-math notation="LaTeX">np^{s} </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p} </tex-math></inline-formula>, which may not necessarily be linear. This introduces a novel class of LRCs, prompting further exploration of the connections between existing nonlinear LRCs in finite fields and linear ring-based LRCs.]]></description><subject>Codes</subject><subject>distributed storage system</subject><subject>erasure code</subject><subject>Generators</subject><subject>Hamming distances</subject><subject>Interpolation</subject><subject>Linear codes</subject><subject>Locally recoverable code</subject><subject>Maintenance engineering</subject><subject>Symbols</subject><issn>0090-6778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotzM1Kw0AUQOFZKFhrX0BcDLhOvDM3M3OzlKBWSAlIu3FT7vxBJJKSEaFvr6Crw7c5QtwqqJWC9mHfDbtdrUE3NaJRzsKFWAG0UFnn6Epcl_IBAA0grsR9PweeprN8S2H-Tgv7KclujqnI4Zfy_STLjbjMPJW0-e9aHJ6f9t226oeX1-6xr0YF9qtSEbz3QIwRElObWxdzjtmSJW5iQ8RgnDXILoDT2oXAOgTSgMZ6VrgWd3_fMaV0PC3jJy_nowIko0jjD1jnPAo</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Kourani, Nasim Abdi</creator><creator>Khodaiemehr, Hassan</creator><creator>Nikmehr, Mohammad Javad</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-0489-8546</orcidid><orcidid>https://orcid.org/0009-0003-3919-5538</orcidid><orcidid>https://orcid.org/0000-0001-6912-3955</orcidid></search><sort><creationdate>202405</creationdate><title>Locally Recoverable Codes Over Zp s</title><author>Kourani, Nasim Abdi ; Khodaiemehr, Hassan ; Nikmehr, Mohammad Javad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-1d0bbb08a3d0ea89f97dffdf6868a4d488a057653a7c07227cca2cc820356ba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>distributed storage system</topic><topic>erasure code</topic><topic>Generators</topic><topic>Hamming distances</topic><topic>Interpolation</topic><topic>Linear codes</topic><topic>Locally recoverable code</topic><topic>Maintenance engineering</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kourani, Nasim Abdi</creatorcontrib><creatorcontrib>Khodaiemehr, Hassan</creatorcontrib><creatorcontrib>Nikmehr, Mohammad Javad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kourani, Nasim Abdi</au><au>Khodaiemehr, Hassan</au><au>Nikmehr, Mohammad Javad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally Recoverable Codes Over Zp s</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2024-05</date><risdate>2024</risdate><volume>72</volume><issue>5</issue><spage>2503</spage><epage>2518</epage><pages>2503-2518</pages><issn>0090-6778</issn><coden>IECMBT</coden><abstract><![CDATA[Locally recoverable codes (LRCs) play a vital role in distributed storage systems where the failure or unavailability of storage devices is a common occurrence. The purpose of LRCs is to facilitate the repair processes required to recover lost or damaged data in such systems. A code <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> will be said <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRC if for each <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>, the <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>th component of codewords have locality <inline-formula> <tex-math notation="LaTeX">(r, \delta) </tex-math></inline-formula>, that is, there exists a punctured subcode of <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula> with support containing <inline-formula> <tex-math notation="LaTeX">i </tex-math></inline-formula>, whose length is at most <inline-formula> <tex-math notation="LaTeX">r + \delta - 1 </tex-math></inline-formula>, and whose minimum distance is at least <inline-formula> <tex-math notation="LaTeX">\delta </tex-math></inline-formula>. An <inline-formula> <tex-math notation="LaTeX">(r, \delta) </tex-math></inline-formula>-LRC with locality <inline-formula> <tex-math notation="LaTeX">(r, \delta) </tex-math></inline-formula> allows for the local recovery of any <inline-formula> <tex-math notation="LaTeX">\delta -1 </tex-math></inline-formula> nodes by accessing information from <inline-formula> <tex-math notation="LaTeX">r </tex-math></inline-formula> other nodes. In this paper, we present new constructions of <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRCs, with <inline-formula> <tex-math notation="LaTeX">2\leq \delta \leq \frac {p-1}{t} </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">t </tex-math></inline-formula> divides <inline-formula> <tex-math notation="LaTeX">p-1 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">t\neq p-1 </tex-math></inline-formula>. Initially, we provide generator matrices for <inline-formula> <tex-math notation="LaTeX">\left ({r,2}\right) </tex-math></inline-formula>-LRCs, among which one instance is considered as Singleton-Type Bound (STB)-optimal, a notion introduced in this paper. Also, we present a method for recovering an erased symbol in a codeword of our <inline-formula> <tex-math notation="LaTeX">\left ({r,2}\right) </tex-math></inline-formula>-LRC. For this aim, we use the polynomial interpolation over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula> proposed by Gopalan. Next, we present the parity-check matrices for another family of <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>, and construct two instances of STB-optimal <inline-formula> <tex-math notation="LaTeX">\left ({r,\delta }\right) </tex-math></inline-formula>-LRCs. To the best of our knowledge, this paper presents the first study on ring-based LRCs. The proposed LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula> exhibit certain design restrictions compared to LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p^{s}} </tex-math></inline-formula>. However, we provide two advantages for LRCs over <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>. First, we analyze Boolean circuits for arithmetic operations and demonstrate that the complexity of implementing multiplication in <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s}} </tex-math></inline-formula>, the operation with the highest cost in our algorithms, is considerably lower than in <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p^{s}} </tex-math></inline-formula>. This highlights the superior performance of our LRCs in terms of implementation speed and cost-efficiency compared to their counterparts. Next, we offer an example illustrating that the Gray image of particular <inline-formula> <tex-math notation="LaTeX">\mathbb {Z}_{p^{s+1}} </tex-math></inline-formula>-LRCs of length <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> results in LRCs of length <inline-formula> <tex-math notation="LaTeX">np^{s} </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p} </tex-math></inline-formula>, which may not necessarily be linear. This introduces a novel class of LRCs, prompting further exploration of the connections between existing nonlinear LRCs in finite fields and linear ring-based LRCs.]]></abstract><pub>IEEE</pub><doi>10.1109/TCOMM.2024.3351760</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0489-8546</orcidid><orcidid>https://orcid.org/0009-0003-3919-5538</orcidid><orcidid>https://orcid.org/0000-0001-6912-3955</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2024-05, Vol.72 (5), p.2503-2518
issn 0090-6778
language eng
recordid cdi_ieee_primary_10385182
source IEEE Electronic Library (IEL)
subjects Codes
distributed storage system
erasure code
Generators
Hamming distances
Interpolation
Linear codes
Locally recoverable code
Maintenance engineering
Symbols
title Locally Recoverable Codes Over Zp s
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20Recoverable%20Codes%20Over%20Zp%20s&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Kourani,%20Nasim%20Abdi&rft.date=2024-05&rft.volume=72&rft.issue=5&rft.spage=2503&rft.epage=2518&rft.pages=2503-2518&rft.issn=0090-6778&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2024.3351760&rft_dat=%3Cieee_RIE%3E10385182%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10385182&rfr_iscdi=true