IACC: Cross-Illumination Awareness and Color Correction for Underwater Images Under Mixed Natural and Artificial Lighting
Enhancing underwater images captured under mixed artificial and natural lighting conditions presents two critical challenges. Existing methods lack a unified luminance feature extraction paradigm for mixed lighting scenes, leading to imbalance in luminance features, and consequent local overexposure...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Zhou, Jingchun Gai, Qilin Zhang, Dehuan Lam, Kin-Man Zhang, Weishi Fu, Xianping |
description | Enhancing underwater images captured under mixed artificial and natural lighting conditions presents two critical challenges. Existing methods lack a unified luminance feature extraction paradigm for mixed lighting scenes, leading to imbalance in luminance features, and consequent local overexposure or underexposure. Additionally, some color correction methods, through the fusion of features across multiple color spaces neglect the information loss due to the absence of feature alignment in cross-space fusion. To address these challenges, we propose a specialized method, namely IACC, which unifies the luminance features of underwater images under mixed lighting and guides consistent enhancement across similar luminance regions. Furthermore, complementary colors are introduced to globally guide the correction of color discrepancies, preserving the structural consistency and mitigating potential structural information loss during the original image feature extraction. Extensive experiments on various underwater datasets demonstrate the superiority of our method, which outperforms state-of-the-art methods in both machine and human visual perception. Our code is available at https://github.com/zhoujingchun03/IACC . |
doi_str_mv | 10.1109/TGRS.2023.3346384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10382428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10382428</ieee_id><sourcerecordid>2911488387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1630ab15df896ff67119f694c94829866fb67aa912756af42235c064a1d91ce3</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEmPwAEgcKnHuiJM0TbhVFYxKAyQY5yprk5Gpa0fSauztadcduNiy_f-2_CF0C3gGgOXDcv7xOSOY0BmljFPBztAEokiEmDN2jiYYJA-JkOQSXXm_wRhYBPEEHbIkTR-D1DXeh1lVdVtbq9Y2dZDsldO19j5QdRmkTdW4Pjqni-PY9OVXXWq3V612QbZVa-3HTvBqf3UZvKm2c6o62hPXWmML25cLu_5ubb2-RhdGVV7fnPIULZ-flulLuHifZ2myCAsiWRsCp1itICqNkNwYHgNIwyUrJBNECs7NisdKSSBxxJVhhNCo6J9WUEooNJ2i-3HtzjU_nfZtvmk6V_cXcyIBmBBUxL0KRlUxgHDa5Dtnt8odcsD5ADgfAOcD4PwEuPfcjR6rtf6np4IwIugfFpt3Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911488387</pqid></control><display><type>article</type><title>IACC: Cross-Illumination Awareness and Color Correction for Underwater Images Under Mixed Natural and Artificial Lighting</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Jingchun ; Gai, Qilin ; Zhang, Dehuan ; Lam, Kin-Man ; Zhang, Weishi ; Fu, Xianping</creator><creatorcontrib>Zhou, Jingchun ; Gai, Qilin ; Zhang, Dehuan ; Lam, Kin-Man ; Zhang, Weishi ; Fu, Xianping</creatorcontrib><description>Enhancing underwater images captured under mixed artificial and natural lighting conditions presents two critical challenges. Existing methods lack a unified luminance feature extraction paradigm for mixed lighting scenes, leading to imbalance in luminance features, and consequent local overexposure or underexposure. Additionally, some color correction methods, through the fusion of features across multiple color spaces neglect the information loss due to the absence of feature alignment in cross-space fusion. To address these challenges, we propose a specialized method, namely IACC, which unifies the luminance features of underwater images under mixed lighting and guides consistent enhancement across similar luminance regions. Furthermore, complementary colors are introduced to globally guide the correction of color discrepancies, preserving the structural consistency and mitigating potential structural information loss during the original image feature extraction. Extensive experiments on various underwater datasets demonstrate the superiority of our method, which outperforms state-of-the-art methods in both machine and human visual perception. Our code is available at https://github.com/zhoujingchun03/IACC .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3346384</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Color ; Color correction ; Colour ; Feature extraction ; Illumination ; Image color analysis ; Image enhancement ; Image processing ; Learning (artificial intelligence) ; Lighting ; Logic gates ; low-level task ; Luminance ; luminance feature extraction ; Natural lighting ; Training ; Underwater ; underwater image enhancement (UIE) ; Visual perception</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-1630ab15df896ff67119f694c94829866fb67aa912756af42235c064a1d91ce3</citedby><cites>FETCH-LOGICAL-c294t-1630ab15df896ff67119f694c94829866fb67aa912756af42235c064a1d91ce3</cites><orcidid>0000-0003-0519-8397 ; 0000-0002-4111-6240 ; 0000-0002-0422-8454 ; 0000-0001-9888-9327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10382428$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10382428$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Jingchun</creatorcontrib><creatorcontrib>Gai, Qilin</creatorcontrib><creatorcontrib>Zhang, Dehuan</creatorcontrib><creatorcontrib>Lam, Kin-Man</creatorcontrib><creatorcontrib>Zhang, Weishi</creatorcontrib><creatorcontrib>Fu, Xianping</creatorcontrib><title>IACC: Cross-Illumination Awareness and Color Correction for Underwater Images Under Mixed Natural and Artificial Lighting</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Enhancing underwater images captured under mixed artificial and natural lighting conditions presents two critical challenges. Existing methods lack a unified luminance feature extraction paradigm for mixed lighting scenes, leading to imbalance in luminance features, and consequent local overexposure or underexposure. Additionally, some color correction methods, through the fusion of features across multiple color spaces neglect the information loss due to the absence of feature alignment in cross-space fusion. To address these challenges, we propose a specialized method, namely IACC, which unifies the luminance features of underwater images under mixed lighting and guides consistent enhancement across similar luminance regions. Furthermore, complementary colors are introduced to globally guide the correction of color discrepancies, preserving the structural consistency and mitigating potential structural information loss during the original image feature extraction. Extensive experiments on various underwater datasets demonstrate the superiority of our method, which outperforms state-of-the-art methods in both machine and human visual perception. Our code is available at https://github.com/zhoujingchun03/IACC .</description><subject>Codes</subject><subject>Color</subject><subject>Color correction</subject><subject>Colour</subject><subject>Feature extraction</subject><subject>Illumination</subject><subject>Image color analysis</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Learning (artificial intelligence)</subject><subject>Lighting</subject><subject>Logic gates</subject><subject>low-level task</subject><subject>Luminance</subject><subject>luminance feature extraction</subject><subject>Natural lighting</subject><subject>Training</subject><subject>Underwater</subject><subject>underwater image enhancement (UIE)</subject><subject>Visual perception</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAMhiMEEmPwAEgcKnHuiJM0TbhVFYxKAyQY5yprk5Gpa0fSauztadcduNiy_f-2_CF0C3gGgOXDcv7xOSOY0BmljFPBztAEokiEmDN2jiYYJA-JkOQSXXm_wRhYBPEEHbIkTR-D1DXeh1lVdVtbq9Y2dZDsldO19j5QdRmkTdW4Pjqni-PY9OVXXWq3V612QbZVa-3HTvBqf3UZvKm2c6o62hPXWmML25cLu_5ubb2-RhdGVV7fnPIULZ-flulLuHifZ2myCAsiWRsCp1itICqNkNwYHgNIwyUrJBNECs7NisdKSSBxxJVhhNCo6J9WUEooNJ2i-3HtzjU_nfZtvmk6V_cXcyIBmBBUxL0KRlUxgHDa5Dtnt8odcsD5ADgfAOcD4PwEuPfcjR6rtf6np4IwIugfFpt3Gw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zhou, Jingchun</creator><creator>Gai, Qilin</creator><creator>Zhang, Dehuan</creator><creator>Lam, Kin-Man</creator><creator>Zhang, Weishi</creator><creator>Fu, Xianping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0519-8397</orcidid><orcidid>https://orcid.org/0000-0002-4111-6240</orcidid><orcidid>https://orcid.org/0000-0002-0422-8454</orcidid><orcidid>https://orcid.org/0000-0001-9888-9327</orcidid></search><sort><creationdate>2024</creationdate><title>IACC: Cross-Illumination Awareness and Color Correction for Underwater Images Under Mixed Natural and Artificial Lighting</title><author>Zhou, Jingchun ; Gai, Qilin ; Zhang, Dehuan ; Lam, Kin-Man ; Zhang, Weishi ; Fu, Xianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1630ab15df896ff67119f694c94829866fb67aa912756af42235c064a1d91ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Color</topic><topic>Color correction</topic><topic>Colour</topic><topic>Feature extraction</topic><topic>Illumination</topic><topic>Image color analysis</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Learning (artificial intelligence)</topic><topic>Lighting</topic><topic>Logic gates</topic><topic>low-level task</topic><topic>Luminance</topic><topic>luminance feature extraction</topic><topic>Natural lighting</topic><topic>Training</topic><topic>Underwater</topic><topic>underwater image enhancement (UIE)</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jingchun</creatorcontrib><creatorcontrib>Gai, Qilin</creatorcontrib><creatorcontrib>Zhang, Dehuan</creatorcontrib><creatorcontrib>Lam, Kin-Man</creatorcontrib><creatorcontrib>Zhang, Weishi</creatorcontrib><creatorcontrib>Fu, Xianping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Jingchun</au><au>Gai, Qilin</au><au>Zhang, Dehuan</au><au>Lam, Kin-Man</au><au>Zhang, Weishi</au><au>Fu, Xianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IACC: Cross-Illumination Awareness and Color Correction for Underwater Images Under Mixed Natural and Artificial Lighting</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Enhancing underwater images captured under mixed artificial and natural lighting conditions presents two critical challenges. Existing methods lack a unified luminance feature extraction paradigm for mixed lighting scenes, leading to imbalance in luminance features, and consequent local overexposure or underexposure. Additionally, some color correction methods, through the fusion of features across multiple color spaces neglect the information loss due to the absence of feature alignment in cross-space fusion. To address these challenges, we propose a specialized method, namely IACC, which unifies the luminance features of underwater images under mixed lighting and guides consistent enhancement across similar luminance regions. Furthermore, complementary colors are introduced to globally guide the correction of color discrepancies, preserving the structural consistency and mitigating potential structural information loss during the original image feature extraction. Extensive experiments on various underwater datasets demonstrate the superiority of our method, which outperforms state-of-the-art methods in both machine and human visual perception. Our code is available at https://github.com/zhoujingchun03/IACC .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3346384</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0519-8397</orcidid><orcidid>https://orcid.org/0000-0002-4111-6240</orcidid><orcidid>https://orcid.org/0000-0002-0422-8454</orcidid><orcidid>https://orcid.org/0000-0001-9888-9327</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10382428 |
source | IEEE Electronic Library (IEL) |
subjects | Codes Color Color correction Colour Feature extraction Illumination Image color analysis Image enhancement Image processing Learning (artificial intelligence) Lighting Logic gates low-level task Luminance luminance feature extraction Natural lighting Training Underwater underwater image enhancement (UIE) Visual perception |
title | IACC: Cross-Illumination Awareness and Color Correction for Underwater Images Under Mixed Natural and Artificial Lighting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IACC:%20Cross-Illumination%20Awareness%20and%20Color%20Correction%20for%20Underwater%20Images%20Under%20Mixed%20Natural%20and%20Artificial%20Lighting&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhou,%20Jingchun&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3346384&rft_dat=%3Cproquest_RIE%3E2911488387%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911488387&rft_id=info:pmid/&rft_ieee_id=10382428&rfr_iscdi=true |