EESNN: Hybrid Deep Learning Empowered Spatial-Temporal Features for Network Intrusion Detection System
Intrusion detection systems (IDS) are crucial to network security by identifying and stopping harmful actions. The network intrusion data are blended into an enormous quantity of typical instances as an outcome of the dynamic and time-varying networking surroundings. This leads to a lack of instance...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 12 |
creator | Saikam, Jalaiah Ch, Koteswararao |
description | Intrusion detection systems (IDS) are crucial to network security by identifying and stopping harmful actions. The network intrusion data are blended into an enormous quantity of typical instances as an outcome of the dynamic and time-varying networking surroundings. This leads to a lack of instances for training models and detection outcomes with a high false detection rate. In response to the data imbalance issue, we provide a network intrusion detection (NIDS) technique that combines deep networks and hybrid sampling. With the help of the Difficult Set Sampling Technique (DSSTE) algorithm, we first reduce the noise samples in the majority category before applying Deep Convolutional Generative Adversarial Networks (DCGANs) to boost the minority sample size. Additionally, we create a deep network model using DenseNet169 to extract spatial characteristics and Self Attention-based Transformer (SAT-Net) to extract temporal features. This technique accurately extracts the distinctive characteristics of the data. Finally, we employed Enhanced Elman Spike Neural Network (EESNN) for classifying the attack categories. We undertake experiments on the more recent and comprehensive intrusion datasets BOT-IOT, ToN-IoT, and CICIDS2019 in order to validate the suggested technique. Results indicate that our suggested system outperforms comparable works regarding accuracy, false alarm rate, recall, and precision. |
doi_str_mv | 10.1109/ACCESS.2024.3350197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10381699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10381699</ieee_id><doaj_id>oai_doaj_org_article_996303488e3f4d0cb29f2a7030cf1fce</doaj_id><sourcerecordid>2921284410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3247-197f19cd479a04e012b08d57cf6e6d14a87006e96bd8383cc2b5fbe9cf2a8d5c3</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhQdRULS_QBcB11PzmkfcSR1todTF1HXIZG5kajsZkxTpvzd1RJpNLodzvnvhJMktwVNCsHh4ms2qup5STPmUsQwTUZwlV5TkImUZy89P5stk4v0Gx1dGKSuuElNV9Wr1iOaHxnUtegYY0BKU67v-A1W7wX6DgxbVgwqd2qZriJJTW_QCKuwdeGSsQysI39Z9okUf3N53to-cADocp_rgA-xukgujth4mf_918v5SrWfzdPn2upg9LVPNKC_SeLohQre8EApzwIQ2uGyzQpsc8pZwVRYY5yDypi1ZybSmTWYaENpQFX2aXSeLkdtatZGD63bKHaRVnfwVrPuQyoVOb0EKkTPMeFkCM7zFuqEiUgrMsDbEaIis-5E1OPu1Bx_kxu5dH8-XVFBCS84Jji42urSz3jsw_1sJlsd-5NiPPPYj__qJqbsx1QHASYIdexHsB6gAi9M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921284410</pqid></control><display><type>article</type><title>EESNN: Hybrid Deep Learning Empowered Spatial-Temporal Features for Network Intrusion Detection System</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saikam, Jalaiah ; Ch, Koteswararao</creator><creatorcontrib>Saikam, Jalaiah ; Ch, Koteswararao</creatorcontrib><description>Intrusion detection systems (IDS) are crucial to network security by identifying and stopping harmful actions. The network intrusion data are blended into an enormous quantity of typical instances as an outcome of the dynamic and time-varying networking surroundings. This leads to a lack of instances for training models and detection outcomes with a high false detection rate. In response to the data imbalance issue, we provide a network intrusion detection (NIDS) technique that combines deep networks and hybrid sampling. With the help of the Difficult Set Sampling Technique (DSSTE) algorithm, we first reduce the noise samples in the majority category before applying Deep Convolutional Generative Adversarial Networks (DCGANs) to boost the minority sample size. Additionally, we create a deep network model using DenseNet169 to extract spatial characteristics and Self Attention-based Transformer (SAT-Net) to extract temporal features. This technique accurately extracts the distinctive characteristics of the data. Finally, we employed Enhanced Elman Spike Neural Network (EESNN) for classifying the attack categories. We undertake experiments on the more recent and comprehensive intrusion datasets BOT-IOT, ToN-IoT, and CICIDS2019 in order to validate the suggested technique. Results indicate that our suggested system outperforms comparable works regarding accuracy, false alarm rate, recall, and precision.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3350197</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Data mining ; Deep Convolutional Generative Adversarial Networks (DCGANs) ; Deep learning ; DenseNet 169 ; Difficult Set Sampling Technique (DSSTE) algorithm ; False alarms ; Feature extraction ; Generative adversarial networks ; Intrusion detection system (IDS) ; Intrusion detection systems ; Machine learning ; Network intrusion detection ; Neural networks ; Random forests ; Sampling methods ; Self Attention based Transformer (SAT-Net) ; Telecommunication traffic ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3247-197f19cd479a04e012b08d57cf6e6d14a87006e96bd8383cc2b5fbe9cf2a8d5c3</citedby><orcidid>0009-0005-1396-6669 ; 0009-0000-1711-7983 ; 0000-0002-7398-0076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10381699$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Saikam, Jalaiah</creatorcontrib><creatorcontrib>Ch, Koteswararao</creatorcontrib><title>EESNN: Hybrid Deep Learning Empowered Spatial-Temporal Features for Network Intrusion Detection System</title><title>IEEE access</title><addtitle>Access</addtitle><description>Intrusion detection systems (IDS) are crucial to network security by identifying and stopping harmful actions. The network intrusion data are blended into an enormous quantity of typical instances as an outcome of the dynamic and time-varying networking surroundings. This leads to a lack of instances for training models and detection outcomes with a high false detection rate. In response to the data imbalance issue, we provide a network intrusion detection (NIDS) technique that combines deep networks and hybrid sampling. With the help of the Difficult Set Sampling Technique (DSSTE) algorithm, we first reduce the noise samples in the majority category before applying Deep Convolutional Generative Adversarial Networks (DCGANs) to boost the minority sample size. Additionally, we create a deep network model using DenseNet169 to extract spatial characteristics and Self Attention-based Transformer (SAT-Net) to extract temporal features. This technique accurately extracts the distinctive characteristics of the data. Finally, we employed Enhanced Elman Spike Neural Network (EESNN) for classifying the attack categories. We undertake experiments on the more recent and comprehensive intrusion datasets BOT-IOT, ToN-IoT, and CICIDS2019 in order to validate the suggested technique. Results indicate that our suggested system outperforms comparable works regarding accuracy, false alarm rate, recall, and precision.</description><subject>Algorithms</subject><subject>Data mining</subject><subject>Deep Convolutional Generative Adversarial Networks (DCGANs)</subject><subject>Deep learning</subject><subject>DenseNet 169</subject><subject>Difficult Set Sampling Technique (DSSTE) algorithm</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Intrusion detection system (IDS)</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Network intrusion detection</subject><subject>Neural networks</subject><subject>Random forests</subject><subject>Sampling methods</subject><subject>Self Attention based Transformer (SAT-Net)</subject><subject>Telecommunication traffic</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhQdRULS_QBcB11PzmkfcSR1todTF1HXIZG5kajsZkxTpvzd1RJpNLodzvnvhJMktwVNCsHh4ms2qup5STPmUsQwTUZwlV5TkImUZy89P5stk4v0Gx1dGKSuuElNV9Wr1iOaHxnUtegYY0BKU67v-A1W7wX6DgxbVgwqd2qZriJJTW_QCKuwdeGSsQysI39Z9okUf3N53to-cADocp_rgA-xukgujth4mf_918v5SrWfzdPn2upg9LVPNKC_SeLohQre8EApzwIQ2uGyzQpsc8pZwVRYY5yDypi1ZybSmTWYaENpQFX2aXSeLkdtatZGD63bKHaRVnfwVrPuQyoVOb0EKkTPMeFkCM7zFuqEiUgrMsDbEaIis-5E1OPu1Bx_kxu5dH8-XVFBCS84Jji42urSz3jsw_1sJlsd-5NiPPPYj__qJqbsx1QHASYIdexHsB6gAi9M</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Saikam, Jalaiah</creator><creator>Ch, Koteswararao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0005-1396-6669</orcidid><orcidid>https://orcid.org/0009-0000-1711-7983</orcidid><orcidid>https://orcid.org/0000-0002-7398-0076</orcidid></search><sort><creationdate>2024</creationdate><title>EESNN: Hybrid Deep Learning Empowered Spatial-Temporal Features for Network Intrusion Detection System</title><author>Saikam, Jalaiah ; Ch, Koteswararao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3247-197f19cd479a04e012b08d57cf6e6d14a87006e96bd8383cc2b5fbe9cf2a8d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Data mining</topic><topic>Deep Convolutional Generative Adversarial Networks (DCGANs)</topic><topic>Deep learning</topic><topic>DenseNet 169</topic><topic>Difficult Set Sampling Technique (DSSTE) algorithm</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Intrusion detection system (IDS)</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Network intrusion detection</topic><topic>Neural networks</topic><topic>Random forests</topic><topic>Sampling methods</topic><topic>Self Attention based Transformer (SAT-Net)</topic><topic>Telecommunication traffic</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saikam, Jalaiah</creatorcontrib><creatorcontrib>Ch, Koteswararao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saikam, Jalaiah</au><au>Ch, Koteswararao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EESNN: Hybrid Deep Learning Empowered Spatial-Temporal Features for Network Intrusion Detection System</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Intrusion detection systems (IDS) are crucial to network security by identifying and stopping harmful actions. The network intrusion data are blended into an enormous quantity of typical instances as an outcome of the dynamic and time-varying networking surroundings. This leads to a lack of instances for training models and detection outcomes with a high false detection rate. In response to the data imbalance issue, we provide a network intrusion detection (NIDS) technique that combines deep networks and hybrid sampling. With the help of the Difficult Set Sampling Technique (DSSTE) algorithm, we first reduce the noise samples in the majority category before applying Deep Convolutional Generative Adversarial Networks (DCGANs) to boost the minority sample size. Additionally, we create a deep network model using DenseNet169 to extract spatial characteristics and Self Attention-based Transformer (SAT-Net) to extract temporal features. This technique accurately extracts the distinctive characteristics of the data. Finally, we employed Enhanced Elman Spike Neural Network (EESNN) for classifying the attack categories. We undertake experiments on the more recent and comprehensive intrusion datasets BOT-IOT, ToN-IoT, and CICIDS2019 in order to validate the suggested technique. Results indicate that our suggested system outperforms comparable works regarding accuracy, false alarm rate, recall, and precision.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3350197</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0005-1396-6669</orcidid><orcidid>https://orcid.org/0009-0000-1711-7983</orcidid><orcidid>https://orcid.org/0000-0002-7398-0076</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_10381699 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Data mining Deep Convolutional Generative Adversarial Networks (DCGANs) Deep learning DenseNet 169 Difficult Set Sampling Technique (DSSTE) algorithm False alarms Feature extraction Generative adversarial networks Intrusion detection system (IDS) Intrusion detection systems Machine learning Network intrusion detection Neural networks Random forests Sampling methods Self Attention based Transformer (SAT-Net) Telecommunication traffic Training |
title | EESNN: Hybrid Deep Learning Empowered Spatial-Temporal Features for Network Intrusion Detection System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EESNN:%20Hybrid%20Deep%20Learning%20Empowered%20Spatial-Temporal%20Features%20for%20Network%20Intrusion%20Detection%20System&rft.jtitle=IEEE%20access&rft.au=Saikam,%20Jalaiah&rft.date=2024&rft.volume=12&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3350197&rft_dat=%3Cproquest_ieee_%3E2921284410%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921284410&rft_id=info:pmid/&rft_ieee_id=10381699&rft_doaj_id=oai_doaj_org_article_996303488e3f4d0cb29f2a7030cf1fce&rfr_iscdi=true |