Markov random measure fields for image analysis

A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Marroquin, J.L., Arce, E., Botello, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page I
container_issue
container_start_page I
container_title
container_volume 1
creator Marroquin, J.L.
Arce, E.
Botello, S.
description A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods on synthetic images are presented, as well as realistic applications to the segmentation of magnetic resonance volumes, to motion segmentation, and to edge-preserving filtering.
doi_str_mv 10.1109/ICIP.2002.1038137
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1038137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1038137</ieee_id><sourcerecordid>1038137</sourcerecordid><originalsourceid>FETCH-ieee_primary_10381373</originalsourceid><addsrcrecordid>eNp9TksKwjAUfPgBi_YA4iYXaJtfbbIuil0ILtyXQF8l2o8kKPT2ZtG1w8AMzAwMwJ7RlDGqs6qsbimnlKeMCsVEsYCIB5OoXOolxLpQNFAUR871CiKWc55IpegGYu-fNEDmMuwjyK7GvcYvcWZoxp70aPzHIWktdo0n7eiI7c0DiRlMN3nrd7BuTecxnnULh_PpXl4Si4j124W2m-r5lvif_gASGja6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Markov random measure fields for image analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marroquin, J.L. ; Arce, E. ; Botello, S.</creator><creatorcontrib>Marroquin, J.L. ; Arce, E. ; Botello, S.</creatorcontrib><description>A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods on synthetic images are presented, as well as realistic applications to the segmentation of magnetic resonance volumes, to motion segmentation, and to edge-preserving filtering.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9780780376229</identifier><identifier>ISBN: 0780376226</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2002.1038137</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Computer vision ; Image analysis ; Image edge detection ; Image motion analysis ; Image segmentation ; Magnetic field measurement ; Magnetic resonance ; Motion segmentation ; Stochastic processes</subject><ispartof>Proceedings. International Conference on Image Processing, 2002, Vol.1, p.I-I</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1038137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1038137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marroquin, J.L.</creatorcontrib><creatorcontrib>Arce, E.</creatorcontrib><creatorcontrib>Botello, S.</creatorcontrib><title>Markov random measure fields for image analysis</title><title>Proceedings. International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods on synthetic images are presented, as well as realistic applications to the segmentation of magnetic resonance volumes, to motion segmentation, and to edge-preserving filtering.</description><subject>Bayesian methods</subject><subject>Computer vision</subject><subject>Image analysis</subject><subject>Image edge detection</subject><subject>Image motion analysis</subject><subject>Image segmentation</subject><subject>Magnetic field measurement</subject><subject>Magnetic resonance</subject><subject>Motion segmentation</subject><subject>Stochastic processes</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9780780376229</isbn><isbn>0780376226</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9TksKwjAUfPgBi_YA4iYXaJtfbbIuil0ILtyXQF8l2o8kKPT2ZtG1w8AMzAwMwJ7RlDGqs6qsbimnlKeMCsVEsYCIB5OoXOolxLpQNFAUR871CiKWc55IpegGYu-fNEDmMuwjyK7GvcYvcWZoxp70aPzHIWktdo0n7eiI7c0DiRlMN3nrd7BuTecxnnULh_PpXl4Si4j124W2m-r5lvif_gASGja6</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Marroquin, J.L.</creator><creator>Arce, E.</creator><creator>Botello, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Markov random measure fields for image analysis</title><author>Marroquin, J.L. ; Arce, E. ; Botello, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_10381373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bayesian methods</topic><topic>Computer vision</topic><topic>Image analysis</topic><topic>Image edge detection</topic><topic>Image motion analysis</topic><topic>Image segmentation</topic><topic>Magnetic field measurement</topic><topic>Magnetic resonance</topic><topic>Motion segmentation</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Marroquin, J.L.</creatorcontrib><creatorcontrib>Arce, E.</creatorcontrib><creatorcontrib>Botello, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marroquin, J.L.</au><au>Arce, E.</au><au>Botello, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Markov random measure fields for image analysis</atitle><btitle>Proceedings. International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>I</spage><epage>I</epage><pages>I-I</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9780780376229</isbn><isbn>0780376226</isbn><abstract>A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods on synthetic images are presented, as well as realistic applications to the segmentation of magnetic resonance volumes, to motion segmentation, and to edge-preserving filtering.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2002.1038137</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof Proceedings. International Conference on Image Processing, 2002, Vol.1, p.I-I
issn 1522-4880
2381-8549
language eng
recordid cdi_ieee_primary_1038137
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bayesian methods
Computer vision
Image analysis
Image edge detection
Image motion analysis
Image segmentation
Magnetic field measurement
Magnetic resonance
Motion segmentation
Stochastic processes
title Markov random measure fields for image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Markov%20random%20measure%20fields%20for%20image%20analysis&rft.btitle=Proceedings.%20International%20Conference%20on%20Image%20Processing&rft.au=Marroquin,%20J.L.&rft.date=2002&rft.volume=1&rft.spage=I&rft.epage=I&rft.pages=I-I&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9780780376229&rft.isbn_list=0780376226&rft_id=info:doi/10.1109/ICIP.2002.1038137&rft_dat=%3Cieee_6IE%3E1038137%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1038137&rfr_iscdi=true