Markov random measure fields for image analysis
A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | I |
---|---|
container_issue | |
container_start_page | I |
container_title | |
container_volume | 1 |
creator | Marroquin, J.L. Arce, E. Botello, S. |
description | A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods on synthetic images are presented, as well as realistic applications to the segmentation of magnetic resonance volumes, to motion segmentation, and to edge-preserving filtering. |
doi_str_mv | 10.1109/ICIP.2002.1038137 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1038137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1038137</ieee_id><sourcerecordid>1038137</sourcerecordid><originalsourceid>FETCH-ieee_primary_10381373</originalsourceid><addsrcrecordid>eNp9TksKwjAUfPgBi_YA4iYXaJtfbbIuil0ILtyXQF8l2o8kKPT2ZtG1w8AMzAwMwJ7RlDGqs6qsbimnlKeMCsVEsYCIB5OoXOolxLpQNFAUR871CiKWc55IpegGYu-fNEDmMuwjyK7GvcYvcWZoxp70aPzHIWktdo0n7eiI7c0DiRlMN3nrd7BuTecxnnULh_PpXl4Si4j124W2m-r5lvif_gASGja6</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Markov random measure fields for image analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Marroquin, J.L. ; Arce, E. ; Botello, S.</creator><creatorcontrib>Marroquin, J.L. ; Arce, E. ; Botello, S.</creatorcontrib><description>A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods on synthetic images are presented, as well as realistic applications to the segmentation of magnetic resonance volumes, to motion segmentation, and to edge-preserving filtering.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 9780780376229</identifier><identifier>ISBN: 0780376226</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2002.1038137</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bayesian methods ; Computer vision ; Image analysis ; Image edge detection ; Image motion analysis ; Image segmentation ; Magnetic field measurement ; Magnetic resonance ; Motion segmentation ; Stochastic processes</subject><ispartof>Proceedings. International Conference on Image Processing, 2002, Vol.1, p.I-I</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1038137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1038137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Marroquin, J.L.</creatorcontrib><creatorcontrib>Arce, E.</creatorcontrib><creatorcontrib>Botello, S.</creatorcontrib><title>Markov random measure fields for image analysis</title><title>Proceedings. International Conference on Image Processing</title><addtitle>ICIP</addtitle><description>A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods on synthetic images are presented, as well as realistic applications to the segmentation of magnetic resonance volumes, to motion segmentation, and to edge-preserving filtering.</description><subject>Bayesian methods</subject><subject>Computer vision</subject><subject>Image analysis</subject><subject>Image edge detection</subject><subject>Image motion analysis</subject><subject>Image segmentation</subject><subject>Magnetic field measurement</subject><subject>Magnetic resonance</subject><subject>Motion segmentation</subject><subject>Stochastic processes</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>9780780376229</isbn><isbn>0780376226</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9TksKwjAUfPgBi_YA4iYXaJtfbbIuil0ILtyXQF8l2o8kKPT2ZtG1w8AMzAwMwJ7RlDGqs6qsbimnlKeMCsVEsYCIB5OoXOolxLpQNFAUR871CiKWc55IpegGYu-fNEDmMuwjyK7GvcYvcWZoxp70aPzHIWktdo0n7eiI7c0DiRlMN3nrd7BuTecxnnULh_PpXl4Si4j124W2m-r5lvif_gASGja6</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Marroquin, J.L.</creator><creator>Arce, E.</creator><creator>Botello, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2002</creationdate><title>Markov random measure fields for image analysis</title><author>Marroquin, J.L. ; Arce, E. ; Botello, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_10381373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bayesian methods</topic><topic>Computer vision</topic><topic>Image analysis</topic><topic>Image edge detection</topic><topic>Image motion analysis</topic><topic>Image segmentation</topic><topic>Magnetic field measurement</topic><topic>Magnetic resonance</topic><topic>Motion segmentation</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Marroquin, J.L.</creatorcontrib><creatorcontrib>Arce, E.</creatorcontrib><creatorcontrib>Botello, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marroquin, J.L.</au><au>Arce, E.</au><au>Botello, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Markov random measure fields for image analysis</atitle><btitle>Proceedings. International Conference on Image Processing</btitle><stitle>ICIP</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>I</spage><epage>I</epage><pages>I-I</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>9780780376229</isbn><isbn>0780376226</isbn><abstract>A new Bayesian formulation for the image segmentation problem is presented. It is based on the key idea of using a doubly stochastic prior model for the label field, which allows one to find exact optimal estimators by the minimization of a differentiable function. Comparisons with existing methods on synthetic images are presented, as well as realistic applications to the segmentation of magnetic resonance volumes, to motion segmentation, and to edge-preserving filtering.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2002.1038137</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | Proceedings. International Conference on Image Processing, 2002, Vol.1, p.I-I |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_1038137 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bayesian methods Computer vision Image analysis Image edge detection Image motion analysis Image segmentation Magnetic field measurement Magnetic resonance Motion segmentation Stochastic processes |
title | Markov random measure fields for image analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Markov%20random%20measure%20fields%20for%20image%20analysis&rft.btitle=Proceedings.%20International%20Conference%20on%20Image%20Processing&rft.au=Marroquin,%20J.L.&rft.date=2002&rft.volume=1&rft.spage=I&rft.epage=I&rft.pages=I-I&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=9780780376229&rft.isbn_list=0780376226&rft_id=info:doi/10.1109/ICIP.2002.1038137&rft_dat=%3Cieee_6IE%3E1038137%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1038137&rfr_iscdi=true |