DiffusionEMIS: Diffusion Model for 3D Electromagnetic Inverse Scattering

We propose DiffusionEMIS, a new paradigm that formulates the 3D electromagnetic (EM) inverse scattering (EMIS) as a denoising diffusion process from a 4D noise distribution to the specific 3D scatterer point cloud with reasonable electrical parameters at each point under the scattering field as cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024-01, p.1-1
Hauptverfasser: Bi, Xueting, Chen, Yanjin, Li, Lianlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume
creator Bi, Xueting
Chen, Yanjin
Li, Lianlin
description We propose DiffusionEMIS, a new paradigm that formulates the 3D electromagnetic (EM) inverse scattering (EMIS) as a denoising diffusion process from a 4D noise distribution to the specific 3D scatterer point cloud with reasonable electrical parameters at each point under the scattering field as condition to enrich the research of 3D EMIS community, while avoiding the computational burden of 3D meshes. During training process, scatterer point clouds diffuse from ground truth shapes to random distributions, and the model learns to reverse this noising process. During inference process, the model progressively refines the randomly generated shape to the output result. We design a certain 3D scattering system to construct two datasets: 3DEMIS-MNIST, where the samples are non-uniform 3D handwritten digits, and 3DEMIS-SHAPENET, where the samples are uniform 3D objects. The extensive evaluations on 3DEMIS-MNIST and 3DEMIS-SHAPENET, show that our DiffusionEMIS achieves favorable performance and great stability which means 3D EMIS can be solved by a generative way. Our model outperforms previous common EMIS methods such as the Born Iterative Method (BIM) by a large margin and has extremely robust noise resistance. To evaluate the generalization performance of diffusionEMIS, we construct the dataset 3DEMIS-EMNIST consisting of non-uniform 3D handwritten letters for testing the model trained on 3DEMIS-MNIST, the test results indicate a great consistency with the groundtruths. We also conducted tests on real data to further demonstrate the effectiveness of our method.
doi_str_mv 10.1109/TGRS.2024.3349681
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10380631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10380631</ieee_id><sourcerecordid>10380631</sourcerecordid><originalsourceid>FETCH-ieee_primary_103806313</originalsourceid><addsrcrecordid>eNqFycsKgkAUgOEhCrLLAwQt5gW0c5zRtG1ZunCT7kXsKBNeYsaC3r5NtG318_EztkFwECHc5Zdr5rjgSkcIGfoBTpiFnhfY4Es5ZRZg6NtuELpztjDmDoDSw73F4pOq66dRQx-lSXbgP_J0uFHL60FzceJRS9Woh65sehpVxZP-RdoQz6pyHEmrvlmxWV22htbfLtn2HOXH2FZEVDy06kr9LhBEAL5A8Wd_ANK_PIw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DiffusionEMIS: Diffusion Model for 3D Electromagnetic Inverse Scattering</title><source>IEEE Electronic Library (IEL)</source><creator>Bi, Xueting ; Chen, Yanjin ; Li, Lianlin</creator><creatorcontrib>Bi, Xueting ; Chen, Yanjin ; Li, Lianlin</creatorcontrib><description>We propose DiffusionEMIS, a new paradigm that formulates the 3D electromagnetic (EM) inverse scattering (EMIS) as a denoising diffusion process from a 4D noise distribution to the specific 3D scatterer point cloud with reasonable electrical parameters at each point under the scattering field as condition to enrich the research of 3D EMIS community, while avoiding the computational burden of 3D meshes. During training process, scatterer point clouds diffuse from ground truth shapes to random distributions, and the model learns to reverse this noising process. During inference process, the model progressively refines the randomly generated shape to the output result. We design a certain 3D scattering system to construct two datasets: 3DEMIS-MNIST, where the samples are non-uniform 3D handwritten digits, and 3DEMIS-SHAPENET, where the samples are uniform 3D objects. The extensive evaluations on 3DEMIS-MNIST and 3DEMIS-SHAPENET, show that our DiffusionEMIS achieves favorable performance and great stability which means 3D EMIS can be solved by a generative way. Our model outperforms previous common EMIS methods such as the Born Iterative Method (BIM) by a large margin and has extremely robust noise resistance. To evaluate the generalization performance of diffusionEMIS, we construct the dataset 3DEMIS-EMNIST consisting of non-uniform 3D handwritten letters for testing the model trained on 3DEMIS-MNIST, the test results indicate a great consistency with the groundtruths. We also conducted tests on real data to further demonstrate the effectiveness of our method.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3349681</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D electromagnetic inverse scattering ; Diffusion model ; Diffusion processes ; electrical parameter ; Electromagnetic interference ; Electromagnetic scattering ; Imaging ; Permittivity ; point cloud ; Point cloud compression ; Three-dimensional displays</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024-01, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2479-4904 ; 0000-0002-2295-4425</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10380631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10380631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bi, Xueting</creatorcontrib><creatorcontrib>Chen, Yanjin</creatorcontrib><creatorcontrib>Li, Lianlin</creatorcontrib><title>DiffusionEMIS: Diffusion Model for 3D Electromagnetic Inverse Scattering</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>We propose DiffusionEMIS, a new paradigm that formulates the 3D electromagnetic (EM) inverse scattering (EMIS) as a denoising diffusion process from a 4D noise distribution to the specific 3D scatterer point cloud with reasonable electrical parameters at each point under the scattering field as condition to enrich the research of 3D EMIS community, while avoiding the computational burden of 3D meshes. During training process, scatterer point clouds diffuse from ground truth shapes to random distributions, and the model learns to reverse this noising process. During inference process, the model progressively refines the randomly generated shape to the output result. We design a certain 3D scattering system to construct two datasets: 3DEMIS-MNIST, where the samples are non-uniform 3D handwritten digits, and 3DEMIS-SHAPENET, where the samples are uniform 3D objects. The extensive evaluations on 3DEMIS-MNIST and 3DEMIS-SHAPENET, show that our DiffusionEMIS achieves favorable performance and great stability which means 3D EMIS can be solved by a generative way. Our model outperforms previous common EMIS methods such as the Born Iterative Method (BIM) by a large margin and has extremely robust noise resistance. To evaluate the generalization performance of diffusionEMIS, we construct the dataset 3DEMIS-EMNIST consisting of non-uniform 3D handwritten letters for testing the model trained on 3DEMIS-MNIST, the test results indicate a great consistency with the groundtruths. We also conducted tests on real data to further demonstrate the effectiveness of our method.</description><subject>3D electromagnetic inverse scattering</subject><subject>Diffusion model</subject><subject>Diffusion processes</subject><subject>electrical parameter</subject><subject>Electromagnetic interference</subject><subject>Electromagnetic scattering</subject><subject>Imaging</subject><subject>Permittivity</subject><subject>point cloud</subject><subject>Point cloud compression</subject><subject>Three-dimensional displays</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFycsKgkAUgOEhCrLLAwQt5gW0c5zRtG1ZunCT7kXsKBNeYsaC3r5NtG318_EztkFwECHc5Zdr5rjgSkcIGfoBTpiFnhfY4Es5ZRZg6NtuELpztjDmDoDSw73F4pOq66dRQx-lSXbgP_J0uFHL60FzceJRS9Woh65sehpVxZP-RdoQz6pyHEmrvlmxWV22htbfLtn2HOXH2FZEVDy06kr9LhBEAL5A8Wd_ANK_PIw</recordid><startdate>20240103</startdate><enddate>20240103</enddate><creator>Bi, Xueting</creator><creator>Chen, Yanjin</creator><creator>Li, Lianlin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-2479-4904</orcidid><orcidid>https://orcid.org/0000-0002-2295-4425</orcidid></search><sort><creationdate>20240103</creationdate><title>DiffusionEMIS: Diffusion Model for 3D Electromagnetic Inverse Scattering</title><author>Bi, Xueting ; Chen, Yanjin ; Li, Lianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_103806313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D electromagnetic inverse scattering</topic><topic>Diffusion model</topic><topic>Diffusion processes</topic><topic>electrical parameter</topic><topic>Electromagnetic interference</topic><topic>Electromagnetic scattering</topic><topic>Imaging</topic><topic>Permittivity</topic><topic>point cloud</topic><topic>Point cloud compression</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Xueting</creatorcontrib><creatorcontrib>Chen, Yanjin</creatorcontrib><creatorcontrib>Li, Lianlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bi, Xueting</au><au>Chen, Yanjin</au><au>Li, Lianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DiffusionEMIS: Diffusion Model for 3D Electromagnetic Inverse Scattering</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024-01-03</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>We propose DiffusionEMIS, a new paradigm that formulates the 3D electromagnetic (EM) inverse scattering (EMIS) as a denoising diffusion process from a 4D noise distribution to the specific 3D scatterer point cloud with reasonable electrical parameters at each point under the scattering field as condition to enrich the research of 3D EMIS community, while avoiding the computational burden of 3D meshes. During training process, scatterer point clouds diffuse from ground truth shapes to random distributions, and the model learns to reverse this noising process. During inference process, the model progressively refines the randomly generated shape to the output result. We design a certain 3D scattering system to construct two datasets: 3DEMIS-MNIST, where the samples are non-uniform 3D handwritten digits, and 3DEMIS-SHAPENET, where the samples are uniform 3D objects. The extensive evaluations on 3DEMIS-MNIST and 3DEMIS-SHAPENET, show that our DiffusionEMIS achieves favorable performance and great stability which means 3D EMIS can be solved by a generative way. Our model outperforms previous common EMIS methods such as the Born Iterative Method (BIM) by a large margin and has extremely robust noise resistance. To evaluate the generalization performance of diffusionEMIS, we construct the dataset 3DEMIS-EMNIST consisting of non-uniform 3D handwritten letters for testing the model trained on 3DEMIS-MNIST, the test results indicate a great consistency with the groundtruths. We also conducted tests on real data to further demonstrate the effectiveness of our method.</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2024.3349681</doi><orcidid>https://orcid.org/0000-0002-2479-4904</orcidid><orcidid>https://orcid.org/0000-0002-2295-4425</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024-01, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10380631
source IEEE Electronic Library (IEL)
subjects 3D electromagnetic inverse scattering
Diffusion model
Diffusion processes
electrical parameter
Electromagnetic interference
Electromagnetic scattering
Imaging
Permittivity
point cloud
Point cloud compression
Three-dimensional displays
title DiffusionEMIS: Diffusion Model for 3D Electromagnetic Inverse Scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DiffusionEMIS:%20Diffusion%20Model%20for%203D%20Electromagnetic%20Inverse%20Scattering&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Bi,%20Xueting&rft.date=2024-01-03&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3349681&rft_dat=%3Cieee_RIE%3E10380631%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10380631&rfr_iscdi=true