DeGroot-Based Opinion Formation Under a Global Steering Mechanism

This article investigates how interacting agents arrive to a consensus or a polarized state. We study the opinion formation process under the effect of a global steering mechanism (GSM), which aggregates the opinion-driven stochastic agent states at the network level and feeds back to them a form of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computational social systems 2024-06, Vol.11 (3), p.4040-4057
Hauptverfasser: Conjeaud, Ivan, Lorenz-Spreen, Philipp, Kalogeratos, Argyris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4057
container_issue 3
container_start_page 4040
container_title IEEE transactions on computational social systems
container_volume 11
creator Conjeaud, Ivan
Lorenz-Spreen, Philipp
Kalogeratos, Argyris
description This article investigates how interacting agents arrive to a consensus or a polarized state. We study the opinion formation process under the effect of a global steering mechanism (GSM), which aggregates the opinion-driven stochastic agent states at the network level and feeds back to them a form of global information. We also propose a new two-layer agent-based opinion formation model, called GSM-DeGroot , that captures the coupled dynamics between agent-to-agent local interactions and the GSM's steering effect. This way, agents are subject to the effects of a DeGroot-like local opinion propagation, as well as to a wide variety of possible aggregated information that can affect their opinions, such as trending news feeds, press coverage, polls, elections, etc. Contrary to the standard DeGroot model, our model allows polarization to emerge by letting agents react to the global information in a stubborn differential way. Moreover, the introduced stochastic agent states produce event stream dynamics that can fit to real event data. We explore numerically the model dynamics to find regimes of qualitatively different behavior. We also challenge our model by fitting it to the dynamics of real topics that attracted the public attention and were recorded on Twitter. Our experiments show that the proposed model holds explanatory power, as it evidently captures real opinion formation dynamics via a relatively small set of interpretable parameters.
doi_str_mv 10.1109/TCSS.2023.3330293
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10380567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10380567</ieee_id><sourcerecordid>3068174928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-84e8cfe17b7a95ae99ae1985c36ecffb4c0969684d71c6350750947267801cfc3</originalsourceid><addsrcrecordid>eNpNkE1PAjEURRujiQT5ASYuJnE9-PrdLhEFTTAsgMRdU8obHQJTbIeF_14muGD17uLc-5JDyD2FIaVgn5bjxWLIgPEh5xyY5VekxzizpWXi8_oi35JBzlsAoExKzaBHRi84TTG25bPPuCnmh7qpY1NMYtr7tkurZoOp8MV0F9d-VyxaxFQ3X8UHhm_f1Hl_R24qv8s4-L99spq8Lsdv5Ww-fR-PZmVgQrWlEWhChVSvtbfSo7UeqTUycIWhqtYigFVWGbHRNCguQUuwQjOlDdBQBd4nj-fdQ4o_R8yt28Zjak4vHQdlqBaWmRNFz1RIMeeElTukeu_Tr6PgOlmuk-U6We5f1qnzcO7UiHjBcwNSaf4H1lJkHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068174928</pqid></control><display><type>article</type><title>DeGroot-Based Opinion Formation Under a Global Steering Mechanism</title><source>IEEE Electronic Library (IEL)</source><creator>Conjeaud, Ivan ; Lorenz-Spreen, Philipp ; Kalogeratos, Argyris</creator><creatorcontrib>Conjeaud, Ivan ; Lorenz-Spreen, Philipp ; Kalogeratos, Argyris</creatorcontrib><description>This article investigates how interacting agents arrive to a consensus or a polarized state. We study the opinion formation process under the effect of a global steering mechanism (GSM), which aggregates the opinion-driven stochastic agent states at the network level and feeds back to them a form of global information. We also propose a new two-layer agent-based opinion formation model, called GSM-DeGroot , that captures the coupled dynamics between agent-to-agent local interactions and the GSM's steering effect. This way, agents are subject to the effects of a DeGroot-like local opinion propagation, as well as to a wide variety of possible aggregated information that can affect their opinions, such as trending news feeds, press coverage, polls, elections, etc. Contrary to the standard DeGroot model, our model allows polarization to emerge by letting agents react to the global information in a stubborn differential way. Moreover, the introduced stochastic agent states produce event stream dynamics that can fit to real event data. We explore numerically the model dynamics to find regimes of qualitatively different behavior. We also challenge our model by fitting it to the dynamics of real topics that attracted the public attention and were recorded on Twitter. Our experiments show that the proposed model holds explanatory power, as it evidently captures real opinion formation dynamics via a relatively small set of interpretable parameters.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2023.3330293</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agent-based modeling ; Biological system modeling ; Data models ; DeGroot model ; Dynamics ; event data stream ; Feeds ; global steering ; GSM ; influence ; information aggregation ; mass-movements ; media ; opinion formation dynamics ; Peer-to-peer computing ; polarization ; public debate ; public opinion ; Social networking (online) ; social networks ; Steering mechanisms ; Stochastic processes</subject><ispartof>IEEE transactions on computational social systems, 2024-06, Vol.11 (3), p.4040-4057</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-84e8cfe17b7a95ae99ae1985c36ecffb4c0969684d71c6350750947267801cfc3</cites><orcidid>0000-0001-6319-4154 ; 0009-0003-1544-574X ; 0000-0003-1436-3593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10380567$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10380567$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Conjeaud, Ivan</creatorcontrib><creatorcontrib>Lorenz-Spreen, Philipp</creatorcontrib><creatorcontrib>Kalogeratos, Argyris</creatorcontrib><title>DeGroot-Based Opinion Formation Under a Global Steering Mechanism</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>This article investigates how interacting agents arrive to a consensus or a polarized state. We study the opinion formation process under the effect of a global steering mechanism (GSM), which aggregates the opinion-driven stochastic agent states at the network level and feeds back to them a form of global information. We also propose a new two-layer agent-based opinion formation model, called GSM-DeGroot , that captures the coupled dynamics between agent-to-agent local interactions and the GSM's steering effect. This way, agents are subject to the effects of a DeGroot-like local opinion propagation, as well as to a wide variety of possible aggregated information that can affect their opinions, such as trending news feeds, press coverage, polls, elections, etc. Contrary to the standard DeGroot model, our model allows polarization to emerge by letting agents react to the global information in a stubborn differential way. Moreover, the introduced stochastic agent states produce event stream dynamics that can fit to real event data. We explore numerically the model dynamics to find regimes of qualitatively different behavior. We also challenge our model by fitting it to the dynamics of real topics that attracted the public attention and were recorded on Twitter. Our experiments show that the proposed model holds explanatory power, as it evidently captures real opinion formation dynamics via a relatively small set of interpretable parameters.</description><subject>Agent-based modeling</subject><subject>Biological system modeling</subject><subject>Data models</subject><subject>DeGroot model</subject><subject>Dynamics</subject><subject>event data stream</subject><subject>Feeds</subject><subject>global steering</subject><subject>GSM</subject><subject>influence</subject><subject>information aggregation</subject><subject>mass-movements</subject><subject>media</subject><subject>opinion formation dynamics</subject><subject>Peer-to-peer computing</subject><subject>polarization</subject><subject>public debate</subject><subject>public opinion</subject><subject>Social networking (online)</subject><subject>social networks</subject><subject>Steering mechanisms</subject><subject>Stochastic processes</subject><issn>2329-924X</issn><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEURRujiQT5ASYuJnE9-PrdLhEFTTAsgMRdU8obHQJTbIeF_14muGD17uLc-5JDyD2FIaVgn5bjxWLIgPEh5xyY5VekxzizpWXi8_oi35JBzlsAoExKzaBHRi84TTG25bPPuCnmh7qpY1NMYtr7tkurZoOp8MV0F9d-VyxaxFQ3X8UHhm_f1Hl_R24qv8s4-L99spq8Lsdv5Ww-fR-PZmVgQrWlEWhChVSvtbfSo7UeqTUycIWhqtYigFVWGbHRNCguQUuwQjOlDdBQBd4nj-fdQ4o_R8yt28Zjak4vHQdlqBaWmRNFz1RIMeeElTukeu_Tr6PgOlmuk-U6We5f1qnzcO7UiHjBcwNSaf4H1lJkHQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Conjeaud, Ivan</creator><creator>Lorenz-Spreen, Philipp</creator><creator>Kalogeratos, Argyris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6319-4154</orcidid><orcidid>https://orcid.org/0009-0003-1544-574X</orcidid><orcidid>https://orcid.org/0000-0003-1436-3593</orcidid></search><sort><creationdate>20240601</creationdate><title>DeGroot-Based Opinion Formation Under a Global Steering Mechanism</title><author>Conjeaud, Ivan ; Lorenz-Spreen, Philipp ; Kalogeratos, Argyris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-84e8cfe17b7a95ae99ae1985c36ecffb4c0969684d71c6350750947267801cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agent-based modeling</topic><topic>Biological system modeling</topic><topic>Data models</topic><topic>DeGroot model</topic><topic>Dynamics</topic><topic>event data stream</topic><topic>Feeds</topic><topic>global steering</topic><topic>GSM</topic><topic>influence</topic><topic>information aggregation</topic><topic>mass-movements</topic><topic>media</topic><topic>opinion formation dynamics</topic><topic>Peer-to-peer computing</topic><topic>polarization</topic><topic>public debate</topic><topic>public opinion</topic><topic>Social networking (online)</topic><topic>social networks</topic><topic>Steering mechanisms</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conjeaud, Ivan</creatorcontrib><creatorcontrib>Lorenz-Spreen, Philipp</creatorcontrib><creatorcontrib>Kalogeratos, Argyris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Conjeaud, Ivan</au><au>Lorenz-Spreen, Philipp</au><au>Kalogeratos, Argyris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DeGroot-Based Opinion Formation Under a Global Steering Mechanism</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>4040</spage><epage>4057</epage><pages>4040-4057</pages><issn>2329-924X</issn><eissn>2329-924X</eissn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>This article investigates how interacting agents arrive to a consensus or a polarized state. We study the opinion formation process under the effect of a global steering mechanism (GSM), which aggregates the opinion-driven stochastic agent states at the network level and feeds back to them a form of global information. We also propose a new two-layer agent-based opinion formation model, called GSM-DeGroot , that captures the coupled dynamics between agent-to-agent local interactions and the GSM's steering effect. This way, agents are subject to the effects of a DeGroot-like local opinion propagation, as well as to a wide variety of possible aggregated information that can affect their opinions, such as trending news feeds, press coverage, polls, elections, etc. Contrary to the standard DeGroot model, our model allows polarization to emerge by letting agents react to the global information in a stubborn differential way. Moreover, the introduced stochastic agent states produce event stream dynamics that can fit to real event data. We explore numerically the model dynamics to find regimes of qualitatively different behavior. We also challenge our model by fitting it to the dynamics of real topics that attracted the public attention and were recorded on Twitter. Our experiments show that the proposed model holds explanatory power, as it evidently captures real opinion formation dynamics via a relatively small set of interpretable parameters.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2023.3330293</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-6319-4154</orcidid><orcidid>https://orcid.org/0009-0003-1544-574X</orcidid><orcidid>https://orcid.org/0000-0003-1436-3593</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2329-924X
ispartof IEEE transactions on computational social systems, 2024-06, Vol.11 (3), p.4040-4057
issn 2329-924X
2329-924X
2373-7476
language eng
recordid cdi_ieee_primary_10380567
source IEEE Electronic Library (IEL)
subjects Agent-based modeling
Biological system modeling
Data models
DeGroot model
Dynamics
event data stream
Feeds
global steering
GSM
influence
information aggregation
mass-movements
media
opinion formation dynamics
Peer-to-peer computing
polarization
public debate
public opinion
Social networking (online)
social networks
Steering mechanisms
Stochastic processes
title DeGroot-Based Opinion Formation Under a Global Steering Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DeGroot-Based%20Opinion%20Formation%20Under%20a%20Global%20Steering%20Mechanism&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Conjeaud,%20Ivan&rft.date=2024-06-01&rft.volume=11&rft.issue=3&rft.spage=4040&rft.epage=4057&rft.pages=4040-4057&rft.issn=2329-924X&rft.eissn=2329-924X&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2023.3330293&rft_dat=%3Cproquest_RIE%3E3068174928%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068174928&rft_id=info:pmid/&rft_ieee_id=10380567&rfr_iscdi=true