Maxwell-Schrodinger Modeling of a ¨ Superconducting Qubit Coupled to a Transmission Line Network
In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the...
Gespeichert in:
Veröffentlicht in: | IEEE journal on multiscale and multiphysics computational techniques 2024-01, Vol.9, p.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE journal on multiscale and multiphysics computational techniques |
container_volume | 9 |
creator | Roth, Thomas E. Elkin, Samuel T. |
description | In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrodinger ¨ method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits. |
doi_str_mv | 10.1109/JMMCT.2024.3349433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10379676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379676</ieee_id><sourcerecordid>2915734948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-c2347e7ab06042cb453d70b2ba8ddbfc3070293746727f998825f358ba76dbf83</originalsourceid><addsrcrecordid>eNpNkE1OwzAQhS0EElXpBRALS6xTHNuJ7SWK-FUDQi1ry44dSEnjYCcq3IhzcDISWiQ2M08z781IHwCnMZrHMRIX93mereYYYTonhApKyAGYYMJExJkgh3-ax8kxmIWwRgjFDGOE8ASoXH1sbV1Hy-LVO1M1L9bD3BlbDxK6Eir4_QWXfWt94RrTF904f-p11cHM9W1tDezc4Fp51YRNFULlGrioGgsfbLd1_u0EHJWqDna271PwfH21ym6jxePNXXa5iApMWTdUQpllSqMUUVxomhDDkMZacWN0WRDEEBaE0ZRhVgrBOU5KknCtWDrsOZmC893d1rv33oZOrl3vm-GlxCJO2EhmdOGdq_AuBG9L2fpqo_ynjJEcacpfmnKkKfc0h9DZLlRZa_8FBqwpS8kPYQlxZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915734948</pqid></control><display><type>article</type><title>Maxwell-Schrodinger Modeling of a ¨ Superconducting Qubit Coupled to a Transmission Line Network</title><source>IEEE Electronic Library (IEL)</source><creator>Roth, Thomas E. ; Elkin, Samuel T.</creator><creatorcontrib>Roth, Thomas E. ; Elkin, Samuel T.</creatorcontrib><description>In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrodinger ¨ method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits.</description><identifier>ISSN: 2379-8815</identifier><identifier>EISSN: 2379-8793</identifier><identifier>EISSN: 2379-8815</identifier><identifier>DOI: 10.1109/JMMCT.2024.3349433</identifier><identifier>CODEN: IJMMOP</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>circuit quantum electrodynamics ; Circuits ; computational electromagnetics ; Hybrid modeling ; Mathematical models ; Microwave circuits ; Microwave measurement ; Microwaves ; Numerical models ; Power transmission lines ; Quantum phenomena ; Quantum statistics ; Qubit ; Qubits (quantum computing) ; Superconducting microwave devices ; superconducting qubits ; Superconducting transmission lines ; Superconductivity ; Transmission line measurements ; Transmission lines</subject><ispartof>IEEE journal on multiscale and multiphysics computational techniques, 2024-01, Vol.9, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-c2347e7ab06042cb453d70b2ba8ddbfc3070293746727f998825f358ba76dbf83</cites><orcidid>0000-0001-5771-4205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379676$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379676$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roth, Thomas E.</creatorcontrib><creatorcontrib>Elkin, Samuel T.</creatorcontrib><title>Maxwell-Schrodinger Modeling of a ¨ Superconducting Qubit Coupled to a Transmission Line Network</title><title>IEEE journal on multiscale and multiphysics computational techniques</title><addtitle>JMMCT</addtitle><description>In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrodinger ¨ method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits.</description><subject>circuit quantum electrodynamics</subject><subject>Circuits</subject><subject>computational electromagnetics</subject><subject>Hybrid modeling</subject><subject>Mathematical models</subject><subject>Microwave circuits</subject><subject>Microwave measurement</subject><subject>Microwaves</subject><subject>Numerical models</subject><subject>Power transmission lines</subject><subject>Quantum phenomena</subject><subject>Quantum statistics</subject><subject>Qubit</subject><subject>Qubits (quantum computing)</subject><subject>Superconducting microwave devices</subject><subject>superconducting qubits</subject><subject>Superconducting transmission lines</subject><subject>Superconductivity</subject><subject>Transmission line measurements</subject><subject>Transmission lines</subject><issn>2379-8815</issn><issn>2379-8793</issn><issn>2379-8815</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1OwzAQhS0EElXpBRALS6xTHNuJ7SWK-FUDQi1ry44dSEnjYCcq3IhzcDISWiQ2M08z781IHwCnMZrHMRIX93mereYYYTonhApKyAGYYMJExJkgh3-ax8kxmIWwRgjFDGOE8ASoXH1sbV1Hy-LVO1M1L9bD3BlbDxK6Eir4_QWXfWt94RrTF904f-p11cHM9W1tDezc4Fp51YRNFULlGrioGgsfbLd1_u0EHJWqDna271PwfH21ym6jxePNXXa5iApMWTdUQpllSqMUUVxomhDDkMZacWN0WRDEEBaE0ZRhVgrBOU5KknCtWDrsOZmC893d1rv33oZOrl3vm-GlxCJO2EhmdOGdq_AuBG9L2fpqo_ynjJEcacpfmnKkKfc0h9DZLlRZa_8FBqwpS8kPYQlxZQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Roth, Thomas E.</creator><creator>Elkin, Samuel T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5771-4205</orcidid></search><sort><creationdate>20240101</creationdate><title>Maxwell-Schrodinger Modeling of a ¨ Superconducting Qubit Coupled to a Transmission Line Network</title><author>Roth, Thomas E. ; Elkin, Samuel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-c2347e7ab06042cb453d70b2ba8ddbfc3070293746727f998825f358ba76dbf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>circuit quantum electrodynamics</topic><topic>Circuits</topic><topic>computational electromagnetics</topic><topic>Hybrid modeling</topic><topic>Mathematical models</topic><topic>Microwave circuits</topic><topic>Microwave measurement</topic><topic>Microwaves</topic><topic>Numerical models</topic><topic>Power transmission lines</topic><topic>Quantum phenomena</topic><topic>Quantum statistics</topic><topic>Qubit</topic><topic>Qubits (quantum computing)</topic><topic>Superconducting microwave devices</topic><topic>superconducting qubits</topic><topic>Superconducting transmission lines</topic><topic>Superconductivity</topic><topic>Transmission line measurements</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roth, Thomas E.</creatorcontrib><creatorcontrib>Elkin, Samuel T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE journal on multiscale and multiphysics computational techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roth, Thomas E.</au><au>Elkin, Samuel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maxwell-Schrodinger Modeling of a ¨ Superconducting Qubit Coupled to a Transmission Line Network</atitle><jtitle>IEEE journal on multiscale and multiphysics computational techniques</jtitle><stitle>JMMCT</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>9</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>2379-8815</issn><eissn>2379-8793</eissn><eissn>2379-8815</eissn><coden>IJMMOP</coden><abstract>In superconducting circuit quantum information technologies, classical microwave pulses are applied to control and measure the qubit states. Currently, the design of these microwave pulses uses simple theoretical or numerical models that do not account for the self-consistent interactions of how the qubit state modifies the applied microwave pulse. In this work, we present the formulation and finite element time domain discretization of a semiclassical Maxwell-Schrodinger ¨ method for describing these self-consistent dynamics for the case of a superconducting qubit capacitively coupled to a general transmission line network. We validate the proposed method by characterizing key effects related to common control and measurement approaches for transmon and fluxonium qubits in systems that are amenable to theoretical analysis. Our numerical results also highlight scenarios where including the self-consistent interactions is essential. By treating the microwaves classically, our method is substantially more efficient than fully-quantum methods for the many situations where the quantum statistics of the microwaves are not needed. Further, our approach does not require any reformulations when the transmission line system is modified. In the future, our method can be used to rapidly explore broader design spaces to search for more effective control and measurement protocols for superconducting qubits.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JMMCT.2024.3349433</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5771-4205</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8815 |
ispartof | IEEE journal on multiscale and multiphysics computational techniques, 2024-01, Vol.9, p.1-14 |
issn | 2379-8815 2379-8793 2379-8815 |
language | eng |
recordid | cdi_ieee_primary_10379676 |
source | IEEE Electronic Library (IEL) |
subjects | circuit quantum electrodynamics Circuits computational electromagnetics Hybrid modeling Mathematical models Microwave circuits Microwave measurement Microwaves Numerical models Power transmission lines Quantum phenomena Quantum statistics Qubit Qubits (quantum computing) Superconducting microwave devices superconducting qubits Superconducting transmission lines Superconductivity Transmission line measurements Transmission lines |
title | Maxwell-Schrodinger Modeling of a ¨ Superconducting Qubit Coupled to a Transmission Line Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maxwell-Schrodinger%20Modeling%20of%20a%20%C2%A8%20Superconducting%20Qubit%20Coupled%20to%20a%20Transmission%20Line%20Network&rft.jtitle=IEEE%20journal%20on%20multiscale%20and%20multiphysics%20computational%20techniques&rft.au=Roth,%20Thomas%20E.&rft.date=2024-01-01&rft.volume=9&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=2379-8815&rft.eissn=2379-8793&rft.coden=IJMMOP&rft_id=info:doi/10.1109/JMMCT.2024.3349433&rft_dat=%3Cproquest_RIE%3E2915734948%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915734948&rft_id=info:pmid/&rft_ieee_id=10379676&rfr_iscdi=true |