Effect Analysis of Wearing an Lumbar Exoskeleton on Coordinated Activities of the Low Back Muscles Using sEMG Topographic Maps
Lumbar exoskeleton has potential to assist in lumbar movements and thereby prevent impairment of back muscles. However, due to limitations of evaluation tools, the effect of lumbar exoskeletons on coordinated activities of back muscles is seldom investigated. This study used the surface electromyogr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024-01, Vol.32, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Jiang, Naifu Wang, Dashuai Ji, Xinyu Wang, Lin Wu, Xinyu Li, Guanglin |
description | Lumbar exoskeleton has potential to assist in lumbar movements and thereby prevent impairment of back muscles. However, due to limitations of evaluation tools, the effect of lumbar exoskeletons on coordinated activities of back muscles is seldom investigated. This study used the surface electromyography (sEMG) topographic map based on multi-channel electrodes from low back muscles to analyze the effects. Thirteen subjects conducted two tasks, namely lifting and holding a 20kg-weight box. For each task, three different trials, not wearing exoskeleton (NoExo), wearing exoskeleton but power-off (OffExo), and wearing exoskeleton and power-on (OnExo), were randomly conducted. Root-mean-square (RMS) and median-frequency (MDF) topographic maps of the recorded sEMG were constructed. Three parameters, average pixel values, distribution of center of gravity (CoG), and entropy, were extracted from the maps to assess the muscle coordinated activities. In the lifting task, results showed the average pixel values of RMS maps for the NoExo trial were lower than those for the OffExo trial (p0.05). The distribution of CoG showed a significant difference between NoExo and OnExo trials (p |
doi_str_mv | 10.1109/TNSRE.2023.3349189 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10379654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379654</ieee_id><doaj_id>oai_doaj_org_article_ca7e3dcf355f484bb27324be6d50e9a4</doaj_id><sourcerecordid>2909609387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-de0954bfd2cb6d4c202211069330609995e7cb9ec204eccfc0c905dc7662d4bb3</originalsourceid><addsrcrecordid>eNpdkVuP0zAQhSMEYi_wBxBClnjZlxRfk_ixVGFZqQUJuuLRcuxJ1900LnYC7Au_HactK4RkyaPxd47Gc7LsFcEzQrB8t_709Us9o5iyGWNckko-yc6JEFWOKcFPp5rxnDOKz7KLGLcYk7IQ5fPsjFUkFVKcZ7_rtgUzoHmvu4foIvIt-gY6uH6DdI-W467RAdW_fLyHDgbfo3QW3gfrej2ARXMzuB9ucHCQDneAlv4neq_NPVqN0XSpfxsnt1ivrtHa7_0m6P2dM2il9_FF9qzVXYSXp_syu_1Qrxcf8-Xn65vFfJkbTtiQW8BS8Ka11DSF5Sb9maYVFJIxXGAppYDSNBLSAwdjWoONxMKasiio5U3DLrObo6_1eqv2we10eFBeO3Vo-LBROgwujauMLoFZ0zIhWl4lMS0Z5Q0UVmCQmievq6PXPvjvI8RB7Vw00HW6Bz9GRSWWaShWlQl9-x-69WNIq54oIkrGK4ITRY-UCT7GAO3jgASrKWl1SFpNSatT0kn05mQ9Njuwj5K_0Sbg9RFwAPCPIytlITj7A9K4rM8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2915734810</pqid></control><display><type>article</type><title>Effect Analysis of Wearing an Lumbar Exoskeleton on Coordinated Activities of the Low Back Muscles Using sEMG Topographic Maps</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jiang, Naifu ; Wang, Dashuai ; Ji, Xinyu ; Wang, Lin ; Wu, Xinyu ; Li, Guanglin</creator><creatorcontrib>Jiang, Naifu ; Wang, Dashuai ; Ji, Xinyu ; Wang, Lin ; Wu, Xinyu ; Li, Guanglin</creatorcontrib><description>Lumbar exoskeleton has potential to assist in lumbar movements and thereby prevent impairment of back muscles. However, due to limitations of evaluation tools, the effect of lumbar exoskeletons on coordinated activities of back muscles is seldom investigated. This study used the surface electromyography (sEMG) topographic map based on multi-channel electrodes from low back muscles to analyze the effects. Thirteen subjects conducted two tasks, namely lifting and holding a 20kg-weight box. For each task, three different trials, not wearing exoskeleton (NoExo), wearing exoskeleton but power-off (OffExo), and wearing exoskeleton and power-on (OnExo), were randomly conducted. Root-mean-square (RMS) and median-frequency (MDF) topographic maps of the recorded sEMG were constructed. Three parameters, average pixel values, distribution of center of gravity (CoG), and entropy, were extracted from the maps to assess the muscle coordinated activities. In the lifting task, results showed the average pixel values of RMS maps for the NoExo trial were lower than those for the OffExo trial (p<0.05) but the same as those for the OnExo trial (p>0.05). The distribution of CoG showed a significant difference between NoExo and OnExo trials (p<0.05). In the holding task, RMS and MDF maps' average pixel values showed significant differences between NoExo and OnExo trials (p<0.05). These findings suggest that active lumbar exoskeletons can reduce the load on low back muscles in the static holding task rather than in the dynamic lifting task. This proves sEMG topographic maps offer a new way to evaluate such effects, thereby helping improve the design of lumbar exoskeleton systems.</description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2023.3349189</identifier><identifier>PMID: 38165795</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Back Muscles - physiology ; Biomechanical Phenomena ; brain-computer interface ; Center of gravity ; Electrodes ; Electromyography ; Electromyography - methods ; Exoskeleton ; Exoskeleton Device ; Exoskeletons ; Hip ; Hoisting ; human-computer interface ; Humans ; low back pain ; Lumbosacral Region - physiology ; Movement ; muscle coordination ; Muscle, Skeletal - physiology ; Muscles ; Pixels ; Surface topography ; Task analysis ; Topographic mapping ; Topographic maps ; Topography ; Torso</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c413t-de0954bfd2cb6d4c202211069330609995e7cb9ec204eccfc0c905dc7662d4bb3</cites><orcidid>0000-0002-9111-2723 ; 0000-0001-9016-2617 ; 0000-0001-7936-8446 ; 0000-0001-6130-7821 ; 0000-0002-3159-7175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38165795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Naifu</creatorcontrib><creatorcontrib>Wang, Dashuai</creatorcontrib><creatorcontrib>Ji, Xinyu</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wu, Xinyu</creatorcontrib><creatorcontrib>Li, Guanglin</creatorcontrib><title>Effect Analysis of Wearing an Lumbar Exoskeleton on Coordinated Activities of the Low Back Muscles Using sEMG Topographic Maps</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Lumbar exoskeleton has potential to assist in lumbar movements and thereby prevent impairment of back muscles. However, due to limitations of evaluation tools, the effect of lumbar exoskeletons on coordinated activities of back muscles is seldom investigated. This study used the surface electromyography (sEMG) topographic map based on multi-channel electrodes from low back muscles to analyze the effects. Thirteen subjects conducted two tasks, namely lifting and holding a 20kg-weight box. For each task, three different trials, not wearing exoskeleton (NoExo), wearing exoskeleton but power-off (OffExo), and wearing exoskeleton and power-on (OnExo), were randomly conducted. Root-mean-square (RMS) and median-frequency (MDF) topographic maps of the recorded sEMG were constructed. Three parameters, average pixel values, distribution of center of gravity (CoG), and entropy, were extracted from the maps to assess the muscle coordinated activities. In the lifting task, results showed the average pixel values of RMS maps for the NoExo trial were lower than those for the OffExo trial (p<0.05) but the same as those for the OnExo trial (p>0.05). The distribution of CoG showed a significant difference between NoExo and OnExo trials (p<0.05). In the holding task, RMS and MDF maps' average pixel values showed significant differences between NoExo and OnExo trials (p<0.05). These findings suggest that active lumbar exoskeletons can reduce the load on low back muscles in the static holding task rather than in the dynamic lifting task. This proves sEMG topographic maps offer a new way to evaluate such effects, thereby helping improve the design of lumbar exoskeleton systems.</description><subject>Back Muscles - physiology</subject><subject>Biomechanical Phenomena</subject><subject>brain-computer interface</subject><subject>Center of gravity</subject><subject>Electrodes</subject><subject>Electromyography</subject><subject>Electromyography - methods</subject><subject>Exoskeleton</subject><subject>Exoskeleton Device</subject><subject>Exoskeletons</subject><subject>Hip</subject><subject>Hoisting</subject><subject>human-computer interface</subject><subject>Humans</subject><subject>low back pain</subject><subject>Lumbosacral Region - physiology</subject><subject>Movement</subject><subject>muscle coordination</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscles</subject><subject>Pixels</subject><subject>Surface topography</subject><subject>Task analysis</subject><subject>Topographic mapping</subject><subject>Topographic maps</subject><subject>Topography</subject><subject>Torso</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpdkVuP0zAQhSMEYi_wBxBClnjZlxRfk_ixVGFZqQUJuuLRcuxJ1900LnYC7Au_HactK4RkyaPxd47Gc7LsFcEzQrB8t_709Us9o5iyGWNckko-yc6JEFWOKcFPp5rxnDOKz7KLGLcYk7IQ5fPsjFUkFVKcZ7_rtgUzoHmvu4foIvIt-gY6uH6DdI-W467RAdW_fLyHDgbfo3QW3gfrej2ARXMzuB9ucHCQDneAlv4neq_NPVqN0XSpfxsnt1ivrtHa7_0m6P2dM2il9_FF9qzVXYSXp_syu_1Qrxcf8-Xn65vFfJkbTtiQW8BS8Ka11DSF5Sb9maYVFJIxXGAppYDSNBLSAwdjWoONxMKasiio5U3DLrObo6_1eqv2we10eFBeO3Vo-LBROgwujauMLoFZ0zIhWl4lMS0Z5Q0UVmCQmievq6PXPvjvI8RB7Vw00HW6Bz9GRSWWaShWlQl9-x-69WNIq54oIkrGK4ITRY-UCT7GAO3jgASrKWl1SFpNSatT0kn05mQ9Njuwj5K_0Sbg9RFwAPCPIytlITj7A9K4rM8</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Jiang, Naifu</creator><creator>Wang, Dashuai</creator><creator>Ji, Xinyu</creator><creator>Wang, Lin</creator><creator>Wu, Xinyu</creator><creator>Li, Guanglin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9111-2723</orcidid><orcidid>https://orcid.org/0000-0001-9016-2617</orcidid><orcidid>https://orcid.org/0000-0001-7936-8446</orcidid><orcidid>https://orcid.org/0000-0001-6130-7821</orcidid><orcidid>https://orcid.org/0000-0002-3159-7175</orcidid></search><sort><creationdate>20240101</creationdate><title>Effect Analysis of Wearing an Lumbar Exoskeleton on Coordinated Activities of the Low Back Muscles Using sEMG Topographic Maps</title><author>Jiang, Naifu ; Wang, Dashuai ; Ji, Xinyu ; Wang, Lin ; Wu, Xinyu ; Li, Guanglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-de0954bfd2cb6d4c202211069330609995e7cb9ec204eccfc0c905dc7662d4bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back Muscles - physiology</topic><topic>Biomechanical Phenomena</topic><topic>brain-computer interface</topic><topic>Center of gravity</topic><topic>Electrodes</topic><topic>Electromyography</topic><topic>Electromyography - methods</topic><topic>Exoskeleton</topic><topic>Exoskeleton Device</topic><topic>Exoskeletons</topic><topic>Hip</topic><topic>Hoisting</topic><topic>human-computer interface</topic><topic>Humans</topic><topic>low back pain</topic><topic>Lumbosacral Region - physiology</topic><topic>Movement</topic><topic>muscle coordination</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscles</topic><topic>Pixels</topic><topic>Surface topography</topic><topic>Task analysis</topic><topic>Topographic mapping</topic><topic>Topographic maps</topic><topic>Topography</topic><topic>Torso</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Naifu</creatorcontrib><creatorcontrib>Wang, Dashuai</creatorcontrib><creatorcontrib>Ji, Xinyu</creatorcontrib><creatorcontrib>Wang, Lin</creatorcontrib><creatorcontrib>Wu, Xinyu</creatorcontrib><creatorcontrib>Li, Guanglin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Naifu</au><au>Wang, Dashuai</au><au>Ji, Xinyu</au><au>Wang, Lin</au><au>Wu, Xinyu</au><au>Li, Guanglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect Analysis of Wearing an Lumbar Exoskeleton on Coordinated Activities of the Low Back Muscles Using sEMG Topographic Maps</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>32</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Lumbar exoskeleton has potential to assist in lumbar movements and thereby prevent impairment of back muscles. However, due to limitations of evaluation tools, the effect of lumbar exoskeletons on coordinated activities of back muscles is seldom investigated. This study used the surface electromyography (sEMG) topographic map based on multi-channel electrodes from low back muscles to analyze the effects. Thirteen subjects conducted two tasks, namely lifting and holding a 20kg-weight box. For each task, three different trials, not wearing exoskeleton (NoExo), wearing exoskeleton but power-off (OffExo), and wearing exoskeleton and power-on (OnExo), were randomly conducted. Root-mean-square (RMS) and median-frequency (MDF) topographic maps of the recorded sEMG were constructed. Three parameters, average pixel values, distribution of center of gravity (CoG), and entropy, were extracted from the maps to assess the muscle coordinated activities. In the lifting task, results showed the average pixel values of RMS maps for the NoExo trial were lower than those for the OffExo trial (p<0.05) but the same as those for the OnExo trial (p>0.05). The distribution of CoG showed a significant difference between NoExo and OnExo trials (p<0.05). In the holding task, RMS and MDF maps' average pixel values showed significant differences between NoExo and OnExo trials (p<0.05). These findings suggest that active lumbar exoskeletons can reduce the load on low back muscles in the static holding task rather than in the dynamic lifting task. This proves sEMG topographic maps offer a new way to evaluate such effects, thereby helping improve the design of lumbar exoskeleton systems.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38165795</pmid><doi>10.1109/TNSRE.2023.3349189</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9111-2723</orcidid><orcidid>https://orcid.org/0000-0001-9016-2617</orcidid><orcidid>https://orcid.org/0000-0001-7936-8446</orcidid><orcidid>https://orcid.org/0000-0001-6130-7821</orcidid><orcidid>https://orcid.org/0000-0002-3159-7175</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024-01, Vol.32, p.1-1 |
issn | 1534-4320 1558-0210 1558-0210 |
language | eng |
recordid | cdi_ieee_primary_10379654 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Back Muscles - physiology Biomechanical Phenomena brain-computer interface Center of gravity Electrodes Electromyography Electromyography - methods Exoskeleton Exoskeleton Device Exoskeletons Hip Hoisting human-computer interface Humans low back pain Lumbosacral Region - physiology Movement muscle coordination Muscle, Skeletal - physiology Muscles Pixels Surface topography Task analysis Topographic mapping Topographic maps Topography Torso |
title | Effect Analysis of Wearing an Lumbar Exoskeleton on Coordinated Activities of the Low Back Muscles Using sEMG Topographic Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20Analysis%20of%20Wearing%20an%20Lumbar%20Exoskeleton%20on%20Coordinated%20Activities%20of%20the%20Low%20Back%20Muscles%20Using%20sEMG%20Topographic%20Maps&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Jiang,%20Naifu&rft.date=2024-01-01&rft.volume=32&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2023.3349189&rft_dat=%3Cproquest_ieee_%3E2909609387%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2915734810&rft_id=info:pmid/38165795&rft_ieee_id=10379654&rft_doaj_id=oai_doaj_org_article_ca7e3dcf355f484bb27324be6d50e9a4&rfr_iscdi=true |