Hierarchical Perception-Improving for Decentralized Multi-Robot Motion Planning in Complex Scenarios
Multi-robot cooperative navigation is an important task, which has been widely studied in many fields like logistics, transportation, and disaster rescue. However, most of the existing methods either require some strong assumptions or are validated in simple scenarios, which greatly hinders their im...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-07, Vol.25 (7), p.6486-6500 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6500 |
---|---|
container_issue | 7 |
container_start_page | 6486 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Jia, Yunjie Song, Yong Xiong, Bo Cheng, Jiyu Zhang, Wei Yang, Simon X. Kwong, Sam |
description | Multi-robot cooperative navigation is an important task, which has been widely studied in many fields like logistics, transportation, and disaster rescue. However, most of the existing methods either require some strong assumptions or are validated in simple scenarios, which greatly hinders their implementation in the real world. In this paper, more complex environments are considered in which robots can only acquire local observations from their own sensors and have only limited communication capabilities for mapless collaborative navigation. To address this challenging task, we propose a hierarchical framework, by fusing both Sensor-wise and Agent-wise features for Perception-Improving (SAPI), which can adaptively integrate features from different information sources to improve perception capabilities. Specifically, to facilitate scene understanding, we assign prior knowledge to the visual coder to generate efficient embeddings. For effective feature representation, an attention-based sensor fusion network is designed to fuse sensor-level information of visual and LiDAR sensors, while graph convolution with multi-head attention mechanism is applied to aggregate agent-level information from an arbitrary number of neighbors. In addition, reinforcement learning is used to optimize the policy, where a novel compound reward function is introduced to guide training. Extensive experiments demonstrate that our method has excellent generalization ability in different scenarios and scalability for large-scale systems. |
doi_str_mv | 10.1109/TITS.2023.3344518 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10379540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379540</ieee_id><sourcerecordid>3075427102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-838d17ca0e63f4b2bca22f93e9ebca53005cdc4c559590dac5dd3bc4900f22fb3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPq7FeTHKV-tNBisfW8bDYT3ZJm6yYV9de7oT14mmF43pnhIeSawYgxyO_Ws_VqxIGLkRBSKpadkAFTKksA2Pi077lMclBwTi7adhOnEWIDUk4dBhPsh7OmpksMFned800y2-6C_3LNO618oA9osemCqd0vlnSxrzuXvPrCd3The5wua9M0Pe0aOvHbXY3fdBUzJjjfXpKzytQtXh3rkLw9Pa4n02T-8jyb3M8Ty-W4SzKRlSy1BnAsKlnwwhrOq1xgjrFVAkDZ0kqrVK5yKI1VZSkKK3OAKoKFGJLbw974-uce205v_D408aQWkCrJUxYNDQk7UDb4tg1Y6V1wWxN-NAPdy9S9TN3L1EeZMXNzyDhE_MeLNFcSxB-twXJT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075427102</pqid></control><display><type>article</type><title>Hierarchical Perception-Improving for Decentralized Multi-Robot Motion Planning in Complex Scenarios</title><source>IEEE Electronic Library (IEL)</source><creator>Jia, Yunjie ; Song, Yong ; Xiong, Bo ; Cheng, Jiyu ; Zhang, Wei ; Yang, Simon X. ; Kwong, Sam</creator><creatorcontrib>Jia, Yunjie ; Song, Yong ; Xiong, Bo ; Cheng, Jiyu ; Zhang, Wei ; Yang, Simon X. ; Kwong, Sam</creatorcontrib><description>Multi-robot cooperative navigation is an important task, which has been widely studied in many fields like logistics, transportation, and disaster rescue. However, most of the existing methods either require some strong assumptions or are validated in simple scenarios, which greatly hinders their implementation in the real world. In this paper, more complex environments are considered in which robots can only acquire local observations from their own sensors and have only limited communication capabilities for mapless collaborative navigation. To address this challenging task, we propose a hierarchical framework, by fusing both Sensor-wise and Agent-wise features for Perception-Improving (SAPI), which can adaptively integrate features from different information sources to improve perception capabilities. Specifically, to facilitate scene understanding, we assign prior knowledge to the visual coder to generate efficient embeddings. For effective feature representation, an attention-based sensor fusion network is designed to fuse sensor-level information of visual and LiDAR sensors, while graph convolution with multi-head attention mechanism is applied to aggregate agent-level information from an arbitrary number of neighbors. In addition, reinforcement learning is used to optimize the policy, where a novel compound reward function is introduced to guide training. Extensive experiments demonstrate that our method has excellent generalization ability in different scenarios and scalability for large-scale systems.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3344518</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collision avoidance ; Deep reinforcement learning ; Effectiveness ; feature fusion ; Information sources ; Motion planning ; Multi-robot systems ; Multiple robots ; Multisensor fusion ; Navigation ; Perception ; Reagents ; Robot dynamics ; Robot kinematics ; Robot sensing systems ; Scene analysis ; Sensors ; Visualization</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-07, Vol.25 (7), p.6486-6500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-838d17ca0e63f4b2bca22f93e9ebca53005cdc4c559590dac5dd3bc4900f22fb3</cites><orcidid>0000-0001-7484-7261 ; 0000-0003-2505-2766 ; 0000-0001-5967-2125 ; 0000-0002-4960-3190 ; 0000-0002-8063-2547 ; 0000-0002-6888-7993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379540$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379540$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jia, Yunjie</creatorcontrib><creatorcontrib>Song, Yong</creatorcontrib><creatorcontrib>Xiong, Bo</creatorcontrib><creatorcontrib>Cheng, Jiyu</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Simon X.</creatorcontrib><creatorcontrib>Kwong, Sam</creatorcontrib><title>Hierarchical Perception-Improving for Decentralized Multi-Robot Motion Planning in Complex Scenarios</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Multi-robot cooperative navigation is an important task, which has been widely studied in many fields like logistics, transportation, and disaster rescue. However, most of the existing methods either require some strong assumptions or are validated in simple scenarios, which greatly hinders their implementation in the real world. In this paper, more complex environments are considered in which robots can only acquire local observations from their own sensors and have only limited communication capabilities for mapless collaborative navigation. To address this challenging task, we propose a hierarchical framework, by fusing both Sensor-wise and Agent-wise features for Perception-Improving (SAPI), which can adaptively integrate features from different information sources to improve perception capabilities. Specifically, to facilitate scene understanding, we assign prior knowledge to the visual coder to generate efficient embeddings. For effective feature representation, an attention-based sensor fusion network is designed to fuse sensor-level information of visual and LiDAR sensors, while graph convolution with multi-head attention mechanism is applied to aggregate agent-level information from an arbitrary number of neighbors. In addition, reinforcement learning is used to optimize the policy, where a novel compound reward function is introduced to guide training. Extensive experiments demonstrate that our method has excellent generalization ability in different scenarios and scalability for large-scale systems.</description><subject>Collision avoidance</subject><subject>Deep reinforcement learning</subject><subject>Effectiveness</subject><subject>feature fusion</subject><subject>Information sources</subject><subject>Motion planning</subject><subject>Multi-robot systems</subject><subject>Multiple robots</subject><subject>Multisensor fusion</subject><subject>Navigation</subject><subject>Perception</subject><subject>Reagents</subject><subject>Robot dynamics</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Scene analysis</subject><subject>Sensors</subject><subject>Visualization</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPq7FeTHKV-tNBisfW8bDYT3ZJm6yYV9de7oT14mmF43pnhIeSawYgxyO_Ws_VqxIGLkRBSKpadkAFTKksA2Pi077lMclBwTi7adhOnEWIDUk4dBhPsh7OmpksMFned800y2-6C_3LNO618oA9osemCqd0vlnSxrzuXvPrCd3The5wua9M0Pe0aOvHbXY3fdBUzJjjfXpKzytQtXh3rkLw9Pa4n02T-8jyb3M8Ty-W4SzKRlSy1BnAsKlnwwhrOq1xgjrFVAkDZ0kqrVK5yKI1VZSkKK3OAKoKFGJLbw974-uce205v_D408aQWkCrJUxYNDQk7UDb4tg1Y6V1wWxN-NAPdy9S9TN3L1EeZMXNzyDhE_MeLNFcSxB-twXJT</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Jia, Yunjie</creator><creator>Song, Yong</creator><creator>Xiong, Bo</creator><creator>Cheng, Jiyu</creator><creator>Zhang, Wei</creator><creator>Yang, Simon X.</creator><creator>Kwong, Sam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7484-7261</orcidid><orcidid>https://orcid.org/0000-0003-2505-2766</orcidid><orcidid>https://orcid.org/0000-0001-5967-2125</orcidid><orcidid>https://orcid.org/0000-0002-4960-3190</orcidid><orcidid>https://orcid.org/0000-0002-8063-2547</orcidid><orcidid>https://orcid.org/0000-0002-6888-7993</orcidid></search><sort><creationdate>20240701</creationdate><title>Hierarchical Perception-Improving for Decentralized Multi-Robot Motion Planning in Complex Scenarios</title><author>Jia, Yunjie ; Song, Yong ; Xiong, Bo ; Cheng, Jiyu ; Zhang, Wei ; Yang, Simon X. ; Kwong, Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-838d17ca0e63f4b2bca22f93e9ebca53005cdc4c559590dac5dd3bc4900f22fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collision avoidance</topic><topic>Deep reinforcement learning</topic><topic>Effectiveness</topic><topic>feature fusion</topic><topic>Information sources</topic><topic>Motion planning</topic><topic>Multi-robot systems</topic><topic>Multiple robots</topic><topic>Multisensor fusion</topic><topic>Navigation</topic><topic>Perception</topic><topic>Reagents</topic><topic>Robot dynamics</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Scene analysis</topic><topic>Sensors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yunjie</creatorcontrib><creatorcontrib>Song, Yong</creatorcontrib><creatorcontrib>Xiong, Bo</creatorcontrib><creatorcontrib>Cheng, Jiyu</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Yang, Simon X.</creatorcontrib><creatorcontrib>Kwong, Sam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Yunjie</au><au>Song, Yong</au><au>Xiong, Bo</au><au>Cheng, Jiyu</au><au>Zhang, Wei</au><au>Yang, Simon X.</au><au>Kwong, Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Perception-Improving for Decentralized Multi-Robot Motion Planning in Complex Scenarios</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>25</volume><issue>7</issue><spage>6486</spage><epage>6500</epage><pages>6486-6500</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Multi-robot cooperative navigation is an important task, which has been widely studied in many fields like logistics, transportation, and disaster rescue. However, most of the existing methods either require some strong assumptions or are validated in simple scenarios, which greatly hinders their implementation in the real world. In this paper, more complex environments are considered in which robots can only acquire local observations from their own sensors and have only limited communication capabilities for mapless collaborative navigation. To address this challenging task, we propose a hierarchical framework, by fusing both Sensor-wise and Agent-wise features for Perception-Improving (SAPI), which can adaptively integrate features from different information sources to improve perception capabilities. Specifically, to facilitate scene understanding, we assign prior knowledge to the visual coder to generate efficient embeddings. For effective feature representation, an attention-based sensor fusion network is designed to fuse sensor-level information of visual and LiDAR sensors, while graph convolution with multi-head attention mechanism is applied to aggregate agent-level information from an arbitrary number of neighbors. In addition, reinforcement learning is used to optimize the policy, where a novel compound reward function is introduced to guide training. Extensive experiments demonstrate that our method has excellent generalization ability in different scenarios and scalability for large-scale systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3344518</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7484-7261</orcidid><orcidid>https://orcid.org/0000-0003-2505-2766</orcidid><orcidid>https://orcid.org/0000-0001-5967-2125</orcidid><orcidid>https://orcid.org/0000-0002-4960-3190</orcidid><orcidid>https://orcid.org/0000-0002-8063-2547</orcidid><orcidid>https://orcid.org/0000-0002-6888-7993</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-07, Vol.25 (7), p.6486-6500 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_ieee_primary_10379540 |
source | IEEE Electronic Library (IEL) |
subjects | Collision avoidance Deep reinforcement learning Effectiveness feature fusion Information sources Motion planning Multi-robot systems Multiple robots Multisensor fusion Navigation Perception Reagents Robot dynamics Robot kinematics Robot sensing systems Scene analysis Sensors Visualization |
title | Hierarchical Perception-Improving for Decentralized Multi-Robot Motion Planning in Complex Scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Perception-Improving%20for%20Decentralized%20Multi-Robot%20Motion%20Planning%20in%20Complex%20Scenarios&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Jia,%20Yunjie&rft.date=2024-07-01&rft.volume=25&rft.issue=7&rft.spage=6486&rft.epage=6500&rft.pages=6486-6500&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3344518&rft_dat=%3Cproquest_RIE%3E3075427102%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075427102&rft_id=info:pmid/&rft_ieee_id=10379540&rfr_iscdi=true |