Fusing Channel and Sensor Measurements for Enhancing Predictive Beamforming in UAV-Assisted Massive MIMO Communications

Massive multiple-input multiple-output (MIMO) is a promising technology that can mitigate interference effectively in cellular-connected unmanned aerial vehicle (UAV) communications. In this letter, we propose a fusion of wireless and sensor data to enhance beam alignment for cellular-connected UAV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2024-03, Vol.13 (3), p.869-873
Hauptverfasser: Lee, Byunghyun, Marcum, Andrew C., Love, David J., Krogmeier, James V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 873
container_issue 3
container_start_page 869
container_title IEEE wireless communications letters
container_volume 13
creator Lee, Byunghyun
Marcum, Andrew C.
Love, David J.
Krogmeier, James V.
description Massive multiple-input multiple-output (MIMO) is a promising technology that can mitigate interference effectively in cellular-connected unmanned aerial vehicle (UAV) communications. In this letter, we propose a fusion of wireless and sensor data to enhance beam alignment for cellular-connected UAV massive MIMO communications. We develop a predictive beamforming framework, including the frame structure and predictive beamformer. Moreover, we employ an extended Kalman filter (EKF) to integrate channel and sensor data. Simulation results demonstrate that the proposed scheme can improve position/orientation estimation accuracy significantly, leading to higher spectral efficiency.
doi_str_mv 10.1109/LWC.2023.3348794
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10379456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10379456</ieee_id><sourcerecordid>2947826904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-6ef6fb89cee2815bb715289e66bf545c7685accfec0080f86475db4b38e066033</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxYMoWGrvHjwseE7dr2w2xxpaLbRU0OoxbDYT3dJs6m6i-N-7oUWcyzxmfm8GXhRdEzwlBGd3q7d8SjFlU8a4TDN-Fo0oETSmjCfnf5qll9HE-x0OJTChRI6i70XvjX1H-YeyFvZI2Qo9g_WtQ2tQvnfQgO08qsNgbgOkB_rJQWV0Z74A3YNqwrIZxsai7ew1nnlvfAcVWqugArNerjcob5umt0arzrTWX0UXtdp7mJz6ONou5i_5Y7zaPCzz2SrWVKZdLKAWdSkzDUAlScoyJQmVGQhR1glPdCpkorSuQWMscS0FT5Oq5CWTgIXAjI2j2-Pdg2s_e_BdsWt7Z8PLgmY8lVRkmAcKHyntWu8d1MXBmUa5n4LgYki4CAkXQ8LFKeFguTlaDAD8w1lYJoL9AmhGd8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2947826904</pqid></control><display><type>article</type><title>Fusing Channel and Sensor Measurements for Enhancing Predictive Beamforming in UAV-Assisted Massive MIMO Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Byunghyun ; Marcum, Andrew C. ; Love, David J. ; Krogmeier, James V.</creator><creatorcontrib>Lee, Byunghyun ; Marcum, Andrew C. ; Love, David J. ; Krogmeier, James V.</creatorcontrib><description>Massive multiple-input multiple-output (MIMO) is a promising technology that can mitigate interference effectively in cellular-connected unmanned aerial vehicle (UAV) communications. In this letter, we propose a fusion of wireless and sensor data to enhance beam alignment for cellular-connected UAV massive MIMO communications. We develop a predictive beamforming framework, including the frame structure and predictive beamformer. Moreover, we employ an extended Kalman filter (EKF) to integrate channel and sensor data. Simulation results demonstrate that the proposed scheme can improve position/orientation estimation accuracy significantly, leading to higher spectral efficiency.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2023.3348794</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Array signal processing ; Autonomous aerial vehicles ; Base stations ; Beamforming ; Extended Kalman filter ; Frame structures ; information fusion ; integrated sensing and communication (ISAC) ; Kalman filtering ; Massive MIMO ; MIMO communication ; multi-input multi-output (MIMO) ; Symbols ; Synchronization ; Tracking ; Unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles</subject><ispartof>IEEE wireless communications letters, 2024-03, Vol.13 (3), p.869-873</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-6ef6fb89cee2815bb715289e66bf545c7685accfec0080f86475db4b38e066033</cites><orcidid>0000-0002-7117-6797 ; 0000-0001-5922-4787 ; 0000-0001-5993-7234 ; 0000-0001-7041-2113</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10379456$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27928,27929,54762</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10379456$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Byunghyun</creatorcontrib><creatorcontrib>Marcum, Andrew C.</creatorcontrib><creatorcontrib>Love, David J.</creatorcontrib><creatorcontrib>Krogmeier, James V.</creatorcontrib><title>Fusing Channel and Sensor Measurements for Enhancing Predictive Beamforming in UAV-Assisted Massive MIMO Communications</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Massive multiple-input multiple-output (MIMO) is a promising technology that can mitigate interference effectively in cellular-connected unmanned aerial vehicle (UAV) communications. In this letter, we propose a fusion of wireless and sensor data to enhance beam alignment for cellular-connected UAV massive MIMO communications. We develop a predictive beamforming framework, including the frame structure and predictive beamformer. Moreover, we employ an extended Kalman filter (EKF) to integrate channel and sensor data. Simulation results demonstrate that the proposed scheme can improve position/orientation estimation accuracy significantly, leading to higher spectral efficiency.</description><subject>Array signal processing</subject><subject>Autonomous aerial vehicles</subject><subject>Base stations</subject><subject>Beamforming</subject><subject>Extended Kalman filter</subject><subject>Frame structures</subject><subject>information fusion</subject><subject>integrated sensing and communication (ISAC)</subject><subject>Kalman filtering</subject><subject>Massive MIMO</subject><subject>MIMO communication</subject><subject>multi-input multi-output (MIMO)</subject><subject>Symbols</subject><subject>Synchronization</subject><subject>Tracking</subject><subject>Unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxYMoWGrvHjwseE7dr2w2xxpaLbRU0OoxbDYT3dJs6m6i-N-7oUWcyzxmfm8GXhRdEzwlBGd3q7d8SjFlU8a4TDN-Fo0oETSmjCfnf5qll9HE-x0OJTChRI6i70XvjX1H-YeyFvZI2Qo9g_WtQ2tQvnfQgO08qsNgbgOkB_rJQWV0Z74A3YNqwrIZxsai7ew1nnlvfAcVWqugArNerjcob5umt0arzrTWX0UXtdp7mJz6ONou5i_5Y7zaPCzz2SrWVKZdLKAWdSkzDUAlScoyJQmVGQhR1glPdCpkorSuQWMscS0FT5Oq5CWTgIXAjI2j2-Pdg2s_e_BdsWt7Z8PLgmY8lVRkmAcKHyntWu8d1MXBmUa5n4LgYki4CAkXQ8LFKeFguTlaDAD8w1lYJoL9AmhGd8U</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Lee, Byunghyun</creator><creator>Marcum, Andrew C.</creator><creator>Love, David J.</creator><creator>Krogmeier, James V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7117-6797</orcidid><orcidid>https://orcid.org/0000-0001-5922-4787</orcidid><orcidid>https://orcid.org/0000-0001-5993-7234</orcidid><orcidid>https://orcid.org/0000-0001-7041-2113</orcidid></search><sort><creationdate>20240301</creationdate><title>Fusing Channel and Sensor Measurements for Enhancing Predictive Beamforming in UAV-Assisted Massive MIMO Communications</title><author>Lee, Byunghyun ; Marcum, Andrew C. ; Love, David J. ; Krogmeier, James V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-6ef6fb89cee2815bb715289e66bf545c7685accfec0080f86475db4b38e066033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Array signal processing</topic><topic>Autonomous aerial vehicles</topic><topic>Base stations</topic><topic>Beamforming</topic><topic>Extended Kalman filter</topic><topic>Frame structures</topic><topic>information fusion</topic><topic>integrated sensing and communication (ISAC)</topic><topic>Kalman filtering</topic><topic>Massive MIMO</topic><topic>MIMO communication</topic><topic>multi-input multi-output (MIMO)</topic><topic>Symbols</topic><topic>Synchronization</topic><topic>Tracking</topic><topic>Unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Byunghyun</creatorcontrib><creatorcontrib>Marcum, Andrew C.</creatorcontrib><creatorcontrib>Love, David J.</creatorcontrib><creatorcontrib>Krogmeier, James V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Byunghyun</au><au>Marcum, Andrew C.</au><au>Love, David J.</au><au>Krogmeier, James V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusing Channel and Sensor Measurements for Enhancing Predictive Beamforming in UAV-Assisted Massive MIMO Communications</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>13</volume><issue>3</issue><spage>869</spage><epage>873</epage><pages>869-873</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Massive multiple-input multiple-output (MIMO) is a promising technology that can mitigate interference effectively in cellular-connected unmanned aerial vehicle (UAV) communications. In this letter, we propose a fusion of wireless and sensor data to enhance beam alignment for cellular-connected UAV massive MIMO communications. We develop a predictive beamforming framework, including the frame structure and predictive beamformer. Moreover, we employ an extended Kalman filter (EKF) to integrate channel and sensor data. Simulation results demonstrate that the proposed scheme can improve position/orientation estimation accuracy significantly, leading to higher spectral efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2023.3348794</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7117-6797</orcidid><orcidid>https://orcid.org/0000-0001-5922-4787</orcidid><orcidid>https://orcid.org/0000-0001-5993-7234</orcidid><orcidid>https://orcid.org/0000-0001-7041-2113</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2024-03, Vol.13 (3), p.869-873
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_10379456
source IEEE Electronic Library (IEL)
subjects Array signal processing
Autonomous aerial vehicles
Base stations
Beamforming
Extended Kalman filter
Frame structures
information fusion
integrated sensing and communication (ISAC)
Kalman filtering
Massive MIMO
MIMO communication
multi-input multi-output (MIMO)
Symbols
Synchronization
Tracking
Unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
title Fusing Channel and Sensor Measurements for Enhancing Predictive Beamforming in UAV-Assisted Massive MIMO Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusing%20Channel%20and%20Sensor%20Measurements%20for%20Enhancing%20Predictive%20Beamforming%20in%20UAV-Assisted%20Massive%20MIMO%20Communications&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Lee,%20Byunghyun&rft.date=2024-03-01&rft.volume=13&rft.issue=3&rft.spage=869&rft.epage=873&rft.pages=869-873&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2023.3348794&rft_dat=%3Cproquest_RIE%3E2947826904%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2947826904&rft_id=info:pmid/&rft_ieee_id=10379456&rfr_iscdi=true