CiTST-AdderNets: Computing in Toggle Spin Torques MRAM for Energy-Efficient AdderNets

Recently, Adder Neural Networks (AdderNets) have gained widespread attention as an alternative to traditional Convolutional Neural Networks (CNNs) for deep learning tasks. AdderNets use lightweight addition operations to replace multiplication and accumulation (MAC) operations, but can keep almost t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2024-03, Vol.71 (3), p.1130-1143
Hauptverfasser: Luo, Lichuan, Deng, Erya, Liu, Dijun, Wang, Zhen, Huang, Weiliang, Zhang, He, Liu, Xiao, Bai, Jinyu, Liu, Junzhan, Zhang, Youguang, Kang, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1143
container_issue 3
container_start_page 1130
container_title IEEE transactions on circuits and systems. I, Regular papers
container_volume 71
creator Luo, Lichuan
Deng, Erya
Liu, Dijun
Wang, Zhen
Huang, Weiliang
Zhang, He
Liu, Xiao
Bai, Jinyu
Liu, Junzhan
Zhang, Youguang
Kang, Wang
description Recently, Adder Neural Networks (AdderNets) have gained widespread attention as an alternative to traditional Convolutional Neural Networks (CNNs) for deep learning tasks. AdderNets use lightweight addition operations to replace multiplication and accumulation (MAC) operations, but can keep almost the same accuracy compared to other CNNs. Nevertheless, challenges still exist with regards to hardware resources, power consumption, and communication bandwidth, primarily due to the 'Von-Neumann bottlenecks'. However, computing-in-memory (CIM) architecture based on magnetic random-access memory (MRAM) has great potential for edge DNN implementation. In this paper, we propose a novel CIM paradigm using a novel Toggle-Spin-Torques (TST) driven MRAM for energy-efficient AdderNets (called CiTST_AdderNets). In CiTST_AdderNets, MRAM is driven by the interplay of the field-free spin orbit torque (SOT) effect and the spin transfer torque (STT) effect, which offers a fascinating prospect for energy efficiency and speed. Furthermore, a novel CIM paradigm is proposed to implement the dominating subtraction and sum operations in AdderNets, reducing data transfer and the related energy. Meanwhile, a highly parallel array structure integrating computation and storage is designed to support CiTST_AdderNets. In addition, a mapping strategy is proposed to efficiently map the convolution layer on the array. Fully connected layers can also be efficiently computed. The CiTST-AdderNets macro is designed by using a 65-nm CMOS process. Results show that our CiTST-AdderNets consumes about 1.65 mJ, 9.29 mJ, and 42.46 mJ for running VGG8, ResNet-50, and ResNet-18 respectively at 8-bit fixed-point precision. Compared to state-of-the-art platforms, our macro achieves an energy efficiency improvement of 1.45 x to 66.78 x.
doi_str_mv 10.1109/TCSI.2023.3343081
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10375817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10375817</ieee_id><sourcerecordid>2932575277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-91ab69055b02f353868c2aa6658b665efcefb120684542561238258f8bfc87883</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAEgcLHF28U_sbLhVUQuVWpBoeraS1I5ctUmw00PfnoRWiMvuHGZmVx9Cj4xOGKPJS5auFxNOuZgIEQkK7AqNmJRAKFB1PegoISA43KK7EHaU8oQKNkKb1GXrjEy3W-M_TBdecdoc2mPn6gq7GmdNVe0NXre_2n8fTcCrr-kK28bjWW18dSIza13pTN3hv5Z7dGPzfTAPlz1Gm_ksS9_J8vNtkU6XpOSR6kjC8kIlVMqCciukAAUlz3OlJBT9MLY0tmCcKohkxKViXACXYKGwJcQAYoyez72tb4bfOr1rjr7uT2qeCC5jyeO4d7Gzq_RNCN5Y3Xp3yP1JM6oHenqgpwd6-kKvzzydM84Y888vYgksFj_KQmjz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932575277</pqid></control><display><type>article</type><title>CiTST-AdderNets: Computing in Toggle Spin Torques MRAM for Energy-Efficient AdderNets</title><source>IEEE Electronic Library (IEL)</source><creator>Luo, Lichuan ; Deng, Erya ; Liu, Dijun ; Wang, Zhen ; Huang, Weiliang ; Zhang, He ; Liu, Xiao ; Bai, Jinyu ; Liu, Junzhan ; Zhang, Youguang ; Kang, Wang</creator><creatorcontrib>Luo, Lichuan ; Deng, Erya ; Liu, Dijun ; Wang, Zhen ; Huang, Weiliang ; Zhang, He ; Liu, Xiao ; Bai, Jinyu ; Liu, Junzhan ; Zhang, Youguang ; Kang, Wang</creatorcontrib><description>Recently, Adder Neural Networks (AdderNets) have gained widespread attention as an alternative to traditional Convolutional Neural Networks (CNNs) for deep learning tasks. AdderNets use lightweight addition operations to replace multiplication and accumulation (MAC) operations, but can keep almost the same accuracy compared to other CNNs. Nevertheless, challenges still exist with regards to hardware resources, power consumption, and communication bandwidth, primarily due to the 'Von-Neumann bottlenecks'. However, computing-in-memory (CIM) architecture based on magnetic random-access memory (MRAM) has great potential for edge DNN implementation. In this paper, we propose a novel CIM paradigm using a novel Toggle-Spin-Torques (TST) driven MRAM for energy-efficient AdderNets (called CiTST_AdderNets). In CiTST_AdderNets, MRAM is driven by the interplay of the field-free spin orbit torque (SOT) effect and the spin transfer torque (STT) effect, which offers a fascinating prospect for energy efficiency and speed. Furthermore, a novel CIM paradigm is proposed to implement the dominating subtraction and sum operations in AdderNets, reducing data transfer and the related energy. Meanwhile, a highly parallel array structure integrating computation and storage is designed to support CiTST_AdderNets. In addition, a mapping strategy is proposed to efficiently map the convolution layer on the array. Fully connected layers can also be efficiently computed. The CiTST-AdderNets macro is designed by using a 65-nm CMOS process. Results show that our CiTST-AdderNets consumes about 1.65 mJ, 9.29 mJ, and 42.46 mJ for running VGG8, ResNet-50, and ResNet-18 respectively at 8-bit fixed-point precision. Compared to state-of-the-art platforms, our macro achieves an energy efficiency improvement of 1.45 x to 66.78 x.</description><identifier>ISSN: 1549-8328</identifier><identifier>EISSN: 1558-0806</identifier><identifier>DOI: 10.1109/TCSI.2023.3343081</identifier><identifier>CODEN: ITCSCH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>adder neural networks ; Arrays ; Artificial neural networks ; Cognitive tasks ; Computation ; Computing-in-memory ; Data transfer (computers) ; Electronic mail ; Energy efficiency ; Machine learning ; Magnetic field measurement ; Magnetic fields ; magnetic random-access memory ; Memory management ; Multiplication ; Neural networks ; Power consumption ; Random access memory ; Subtraction ; Switches ; toggle-spin-torques ; Torque</subject><ispartof>IEEE transactions on circuits and systems. I, Regular papers, 2024-03, Vol.71 (3), p.1130-1143</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-91ab69055b02f353868c2aa6658b665efcefb120684542561238258f8bfc87883</cites><orcidid>0000-0001-9262-3106 ; 0009-0001-2725-2537 ; 0000-0001-5064-8057 ; 0000-0001-9369-0327 ; 0000-0002-3169-6034 ; 0000-0001-5465-3961 ; 0000-0002-1751-8346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10375817$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10375817$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luo, Lichuan</creatorcontrib><creatorcontrib>Deng, Erya</creatorcontrib><creatorcontrib>Liu, Dijun</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Huang, Weiliang</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Bai, Jinyu</creatorcontrib><creatorcontrib>Liu, Junzhan</creatorcontrib><creatorcontrib>Zhang, Youguang</creatorcontrib><creatorcontrib>Kang, Wang</creatorcontrib><title>CiTST-AdderNets: Computing in Toggle Spin Torques MRAM for Energy-Efficient AdderNets</title><title>IEEE transactions on circuits and systems. I, Regular papers</title><addtitle>TCSI</addtitle><description>Recently, Adder Neural Networks (AdderNets) have gained widespread attention as an alternative to traditional Convolutional Neural Networks (CNNs) for deep learning tasks. AdderNets use lightweight addition operations to replace multiplication and accumulation (MAC) operations, but can keep almost the same accuracy compared to other CNNs. Nevertheless, challenges still exist with regards to hardware resources, power consumption, and communication bandwidth, primarily due to the 'Von-Neumann bottlenecks'. However, computing-in-memory (CIM) architecture based on magnetic random-access memory (MRAM) has great potential for edge DNN implementation. In this paper, we propose a novel CIM paradigm using a novel Toggle-Spin-Torques (TST) driven MRAM for energy-efficient AdderNets (called CiTST_AdderNets). In CiTST_AdderNets, MRAM is driven by the interplay of the field-free spin orbit torque (SOT) effect and the spin transfer torque (STT) effect, which offers a fascinating prospect for energy efficiency and speed. Furthermore, a novel CIM paradigm is proposed to implement the dominating subtraction and sum operations in AdderNets, reducing data transfer and the related energy. Meanwhile, a highly parallel array structure integrating computation and storage is designed to support CiTST_AdderNets. In addition, a mapping strategy is proposed to efficiently map the convolution layer on the array. Fully connected layers can also be efficiently computed. The CiTST-AdderNets macro is designed by using a 65-nm CMOS process. Results show that our CiTST-AdderNets consumes about 1.65 mJ, 9.29 mJ, and 42.46 mJ for running VGG8, ResNet-50, and ResNet-18 respectively at 8-bit fixed-point precision. Compared to state-of-the-art platforms, our macro achieves an energy efficiency improvement of 1.45 x to 66.78 x.</description><subject>adder neural networks</subject><subject>Arrays</subject><subject>Artificial neural networks</subject><subject>Cognitive tasks</subject><subject>Computation</subject><subject>Computing-in-memory</subject><subject>Data transfer (computers)</subject><subject>Electronic mail</subject><subject>Energy efficiency</subject><subject>Machine learning</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>magnetic random-access memory</subject><subject>Memory management</subject><subject>Multiplication</subject><subject>Neural networks</subject><subject>Power consumption</subject><subject>Random access memory</subject><subject>Subtraction</subject><subject>Switches</subject><subject>toggle-spin-torques</subject><subject>Torque</subject><issn>1549-8328</issn><issn>1558-0806</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAEgcLHF28U_sbLhVUQuVWpBoeraS1I5ctUmw00PfnoRWiMvuHGZmVx9Cj4xOGKPJS5auFxNOuZgIEQkK7AqNmJRAKFB1PegoISA43KK7EHaU8oQKNkKb1GXrjEy3W-M_TBdecdoc2mPn6gq7GmdNVe0NXre_2n8fTcCrr-kK28bjWW18dSIza13pTN3hv5Z7dGPzfTAPlz1Gm_ksS9_J8vNtkU6XpOSR6kjC8kIlVMqCciukAAUlz3OlJBT9MLY0tmCcKohkxKViXACXYKGwJcQAYoyez72tb4bfOr1rjr7uT2qeCC5jyeO4d7Gzq_RNCN5Y3Xp3yP1JM6oHenqgpwd6-kKvzzydM84Y888vYgksFj_KQmjz</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Luo, Lichuan</creator><creator>Deng, Erya</creator><creator>Liu, Dijun</creator><creator>Wang, Zhen</creator><creator>Huang, Weiliang</creator><creator>Zhang, He</creator><creator>Liu, Xiao</creator><creator>Bai, Jinyu</creator><creator>Liu, Junzhan</creator><creator>Zhang, Youguang</creator><creator>Kang, Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9262-3106</orcidid><orcidid>https://orcid.org/0009-0001-2725-2537</orcidid><orcidid>https://orcid.org/0000-0001-5064-8057</orcidid><orcidid>https://orcid.org/0000-0001-9369-0327</orcidid><orcidid>https://orcid.org/0000-0002-3169-6034</orcidid><orcidid>https://orcid.org/0000-0001-5465-3961</orcidid><orcidid>https://orcid.org/0000-0002-1751-8346</orcidid></search><sort><creationdate>20240301</creationdate><title>CiTST-AdderNets: Computing in Toggle Spin Torques MRAM for Energy-Efficient AdderNets</title><author>Luo, Lichuan ; Deng, Erya ; Liu, Dijun ; Wang, Zhen ; Huang, Weiliang ; Zhang, He ; Liu, Xiao ; Bai, Jinyu ; Liu, Junzhan ; Zhang, Youguang ; Kang, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-91ab69055b02f353868c2aa6658b665efcefb120684542561238258f8bfc87883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adder neural networks</topic><topic>Arrays</topic><topic>Artificial neural networks</topic><topic>Cognitive tasks</topic><topic>Computation</topic><topic>Computing-in-memory</topic><topic>Data transfer (computers)</topic><topic>Electronic mail</topic><topic>Energy efficiency</topic><topic>Machine learning</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>magnetic random-access memory</topic><topic>Memory management</topic><topic>Multiplication</topic><topic>Neural networks</topic><topic>Power consumption</topic><topic>Random access memory</topic><topic>Subtraction</topic><topic>Switches</topic><topic>toggle-spin-torques</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Lichuan</creatorcontrib><creatorcontrib>Deng, Erya</creatorcontrib><creatorcontrib>Liu, Dijun</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Huang, Weiliang</creatorcontrib><creatorcontrib>Zhang, He</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Bai, Jinyu</creatorcontrib><creatorcontrib>Liu, Junzhan</creatorcontrib><creatorcontrib>Zhang, Youguang</creatorcontrib><creatorcontrib>Kang, Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luo, Lichuan</au><au>Deng, Erya</au><au>Liu, Dijun</au><au>Wang, Zhen</au><au>Huang, Weiliang</au><au>Zhang, He</au><au>Liu, Xiao</au><au>Bai, Jinyu</au><au>Liu, Junzhan</au><au>Zhang, Youguang</au><au>Kang, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CiTST-AdderNets: Computing in Toggle Spin Torques MRAM for Energy-Efficient AdderNets</atitle><jtitle>IEEE transactions on circuits and systems. I, Regular papers</jtitle><stitle>TCSI</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>71</volume><issue>3</issue><spage>1130</spage><epage>1143</epage><pages>1130-1143</pages><issn>1549-8328</issn><eissn>1558-0806</eissn><coden>ITCSCH</coden><abstract>Recently, Adder Neural Networks (AdderNets) have gained widespread attention as an alternative to traditional Convolutional Neural Networks (CNNs) for deep learning tasks. AdderNets use lightweight addition operations to replace multiplication and accumulation (MAC) operations, but can keep almost the same accuracy compared to other CNNs. Nevertheless, challenges still exist with regards to hardware resources, power consumption, and communication bandwidth, primarily due to the 'Von-Neumann bottlenecks'. However, computing-in-memory (CIM) architecture based on magnetic random-access memory (MRAM) has great potential for edge DNN implementation. In this paper, we propose a novel CIM paradigm using a novel Toggle-Spin-Torques (TST) driven MRAM for energy-efficient AdderNets (called CiTST_AdderNets). In CiTST_AdderNets, MRAM is driven by the interplay of the field-free spin orbit torque (SOT) effect and the spin transfer torque (STT) effect, which offers a fascinating prospect for energy efficiency and speed. Furthermore, a novel CIM paradigm is proposed to implement the dominating subtraction and sum operations in AdderNets, reducing data transfer and the related energy. Meanwhile, a highly parallel array structure integrating computation and storage is designed to support CiTST_AdderNets. In addition, a mapping strategy is proposed to efficiently map the convolution layer on the array. Fully connected layers can also be efficiently computed. The CiTST-AdderNets macro is designed by using a 65-nm CMOS process. Results show that our CiTST-AdderNets consumes about 1.65 mJ, 9.29 mJ, and 42.46 mJ for running VGG8, ResNet-50, and ResNet-18 respectively at 8-bit fixed-point precision. Compared to state-of-the-art platforms, our macro achieves an energy efficiency improvement of 1.45 x to 66.78 x.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSI.2023.3343081</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9262-3106</orcidid><orcidid>https://orcid.org/0009-0001-2725-2537</orcidid><orcidid>https://orcid.org/0000-0001-5064-8057</orcidid><orcidid>https://orcid.org/0000-0001-9369-0327</orcidid><orcidid>https://orcid.org/0000-0002-3169-6034</orcidid><orcidid>https://orcid.org/0000-0001-5465-3961</orcidid><orcidid>https://orcid.org/0000-0002-1751-8346</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-8328
ispartof IEEE transactions on circuits and systems. I, Regular papers, 2024-03, Vol.71 (3), p.1130-1143
issn 1549-8328
1558-0806
language eng
recordid cdi_ieee_primary_10375817
source IEEE Electronic Library (IEL)
subjects adder neural networks
Arrays
Artificial neural networks
Cognitive tasks
Computation
Computing-in-memory
Data transfer (computers)
Electronic mail
Energy efficiency
Machine learning
Magnetic field measurement
Magnetic fields
magnetic random-access memory
Memory management
Multiplication
Neural networks
Power consumption
Random access memory
Subtraction
Switches
toggle-spin-torques
Torque
title CiTST-AdderNets: Computing in Toggle Spin Torques MRAM for Energy-Efficient AdderNets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CiTST-AdderNets:%20Computing%20in%20Toggle%20Spin%20Torques%20MRAM%20for%20Energy-Efficient%20AdderNets&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20I,%20Regular%20papers&rft.au=Luo,%20Lichuan&rft.date=2024-03-01&rft.volume=71&rft.issue=3&rft.spage=1130&rft.epage=1143&rft.pages=1130-1143&rft.issn=1549-8328&rft.eissn=1558-0806&rft.coden=ITCSCH&rft_id=info:doi/10.1109/TCSI.2023.3343081&rft_dat=%3Cproquest_RIE%3E2932575277%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932575277&rft_id=info:pmid/&rft_ieee_id=10375817&rfr_iscdi=true