Spectral Knowledge Transfer for Remote Sensing Change Detection
Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024-01, Vol.62, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Zheng, Hanhong Li, Dongyang Zhang, Mingyang Gong, Maoguo Qin, A. K. Liu, Tongfei Jiang, Fenlong |
description | Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible, using it to enhance the spectral information of RS multispectral imagery for CD can improve the performance. To achieve this, we propose a spectral knowledge transfer (SKT) framework to allow creating pseudo-hyperspectral RS images from the available RS multispectral ones without the need for the real pairs of RS multispectral and hyperspectral images, typically required by existing RS spectral enhancement methods. Specifically, an auto-encoder is firstly trained based on the available pairs of natural hyperspectral imagery and its multispectral counterparts, and then calibrated via the available RS multispectral images. The finally obtained decoder module is used to generate the pseudo-hyperspectral image from an input RS multispectral image. We further propose a multi-spectrum collaborative CD (MCCD) framework which leverages both the real multispectral images and the pseudo hyperspectral images generated from them in a collaborative way to achieve performance improvement. Extensive experiments on two large-scale RS CD data sets and eight existing deep learning-based CD methods demonstrate the stronger efficacy of the proposed method. |
doi_str_mv | 10.1109/TGRS.2023.3346879 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10373904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10373904</ieee_id><sourcerecordid>2912941879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5ca97a038858716d4db4c793bc17b57fb2e32df551a092b8603d84e1829a89593</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKs_QPCw4HlrJh-b5CRSaxULQlvPIbs7W7e0SU22iP_eLe3B01zem2EeIbdARwDUPCyn88WIUcZHnItCK3NGBiClzmkhxDkZUDBFzrRhl-QqpTWlICSoAXlc7LDqottk7z78bLBeYbaMzqcGY9aEmM1xGzrMFuhT61fZ-Mv5HnnGrtfa4K_JReM2CW9Oc0g-XybL8Ws--5i-jZ9mecVE0eWyckY5yrWWWkFRi7oUlTK8rECVUjUlQ87qRkpw1LBSF5TXWiBoZpw20vAhuT_u3cXwvcfU2XXYR9-ftMwAMwL6n3sKjlQVQ0oRG7uL7dbFXwvUHjrZQyd76GRPnXrn7ui0iPiP54obKvgfDYxisg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912941879</pqid></control><display><type>article</type><title>Spectral Knowledge Transfer for Remote Sensing Change Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Hanhong ; Li, Dongyang ; Zhang, Mingyang ; Gong, Maoguo ; Qin, A. K. ; Liu, Tongfei ; Jiang, Fenlong</creator><creatorcontrib>Zheng, Hanhong ; Li, Dongyang ; Zhang, Mingyang ; Gong, Maoguo ; Qin, A. K. ; Liu, Tongfei ; Jiang, Fenlong</creatorcontrib><description>Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible, using it to enhance the spectral information of RS multispectral imagery for CD can improve the performance. To achieve this, we propose a spectral knowledge transfer (SKT) framework to allow creating pseudo-hyperspectral RS images from the available RS multispectral ones without the need for the real pairs of RS multispectral and hyperspectral images, typically required by existing RS spectral enhancement methods. Specifically, an auto-encoder is firstly trained based on the available pairs of natural hyperspectral imagery and its multispectral counterparts, and then calibrated via the available RS multispectral images. The finally obtained decoder module is used to generate the pseudo-hyperspectral image from an input RS multispectral image. We further propose a multi-spectrum collaborative CD (MCCD) framework which leverages both the real multispectral images and the pseudo hyperspectral images generated from them in a collaborative way to achieve performance improvement. Extensive experiments on two large-scale RS CD data sets and eight existing deep learning-based CD methods demonstrate the stronger efficacy of the proposed method.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3346879</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Change detection ; Collaboration ; Data augmentation ; Deep learning ; Detection ; Feature extraction ; Hyperspectral imaging ; Image enhancement ; Image sensors ; Imagery ; Knowledge management ; Knowledge transfer ; Land cover ; Performance enhancement ; Remote sensing ; Sensors ; Spatial resolution ; Spectral resolution ; Task analysis ; VHR remote sensing images</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024-01, Vol.62, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-5ca97a038858716d4db4c793bc17b57fb2e32df551a092b8603d84e1829a89593</cites><orcidid>0000-0003-1394-4724 ; 0000-0001-7693-051X ; 0000-0002-9768-516X ; 0000-0002-0415-8556 ; 0000-0002-3714-0600 ; 0000-0001-6631-1651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10373904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10373904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Hanhong</creatorcontrib><creatorcontrib>Li, Dongyang</creatorcontrib><creatorcontrib>Zhang, Mingyang</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Qin, A. K.</creatorcontrib><creatorcontrib>Liu, Tongfei</creatorcontrib><creatorcontrib>Jiang, Fenlong</creatorcontrib><title>Spectral Knowledge Transfer for Remote Sensing Change Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible, using it to enhance the spectral information of RS multispectral imagery for CD can improve the performance. To achieve this, we propose a spectral knowledge transfer (SKT) framework to allow creating pseudo-hyperspectral RS images from the available RS multispectral ones without the need for the real pairs of RS multispectral and hyperspectral images, typically required by existing RS spectral enhancement methods. Specifically, an auto-encoder is firstly trained based on the available pairs of natural hyperspectral imagery and its multispectral counterparts, and then calibrated via the available RS multispectral images. The finally obtained decoder module is used to generate the pseudo-hyperspectral image from an input RS multispectral image. We further propose a multi-spectrum collaborative CD (MCCD) framework which leverages both the real multispectral images and the pseudo hyperspectral images generated from them in a collaborative way to achieve performance improvement. Extensive experiments on two large-scale RS CD data sets and eight existing deep learning-based CD methods demonstrate the stronger efficacy of the proposed method.</description><subject>Change detection</subject><subject>Collaboration</subject><subject>Data augmentation</subject><subject>Deep learning</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Image enhancement</subject><subject>Image sensors</subject><subject>Imagery</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>Land cover</subject><subject>Performance enhancement</subject><subject>Remote sensing</subject><subject>Sensors</subject><subject>Spatial resolution</subject><subject>Spectral resolution</subject><subject>Task analysis</subject><subject>VHR remote sensing images</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWKs_QPCw4HlrJh-b5CRSaxULQlvPIbs7W7e0SU22iP_eLe3B01zem2EeIbdARwDUPCyn88WIUcZHnItCK3NGBiClzmkhxDkZUDBFzrRhl-QqpTWlICSoAXlc7LDqottk7z78bLBeYbaMzqcGY9aEmM1xGzrMFuhT61fZ-Mv5HnnGrtfa4K_JReM2CW9Oc0g-XybL8Ws--5i-jZ9mecVE0eWyckY5yrWWWkFRi7oUlTK8rECVUjUlQ87qRkpw1LBSF5TXWiBoZpw20vAhuT_u3cXwvcfU2XXYR9-ftMwAMwL6n3sKjlQVQ0oRG7uL7dbFXwvUHjrZQyd76GRPnXrn7ui0iPiP54obKvgfDYxisg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zheng, Hanhong</creator><creator>Li, Dongyang</creator><creator>Zhang, Mingyang</creator><creator>Gong, Maoguo</creator><creator>Qin, A. K.</creator><creator>Liu, Tongfei</creator><creator>Jiang, Fenlong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1394-4724</orcidid><orcidid>https://orcid.org/0000-0001-7693-051X</orcidid><orcidid>https://orcid.org/0000-0002-9768-516X</orcidid><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid><orcidid>https://orcid.org/0000-0002-3714-0600</orcidid><orcidid>https://orcid.org/0000-0001-6631-1651</orcidid></search><sort><creationdate>20240101</creationdate><title>Spectral Knowledge Transfer for Remote Sensing Change Detection</title><author>Zheng, Hanhong ; Li, Dongyang ; Zhang, Mingyang ; Gong, Maoguo ; Qin, A. K. ; Liu, Tongfei ; Jiang, Fenlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5ca97a038858716d4db4c793bc17b57fb2e32df551a092b8603d84e1829a89593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Change detection</topic><topic>Collaboration</topic><topic>Data augmentation</topic><topic>Deep learning</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Image enhancement</topic><topic>Image sensors</topic><topic>Imagery</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>Land cover</topic><topic>Performance enhancement</topic><topic>Remote sensing</topic><topic>Sensors</topic><topic>Spatial resolution</topic><topic>Spectral resolution</topic><topic>Task analysis</topic><topic>VHR remote sensing images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hanhong</creatorcontrib><creatorcontrib>Li, Dongyang</creatorcontrib><creatorcontrib>Zhang, Mingyang</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Qin, A. K.</creatorcontrib><creatorcontrib>Liu, Tongfei</creatorcontrib><creatorcontrib>Jiang, Fenlong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Hanhong</au><au>Li, Dongyang</au><au>Zhang, Mingyang</au><au>Gong, Maoguo</au><au>Qin, A. K.</au><au>Liu, Tongfei</au><au>Jiang, Fenlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Knowledge Transfer for Remote Sensing Change Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible, using it to enhance the spectral information of RS multispectral imagery for CD can improve the performance. To achieve this, we propose a spectral knowledge transfer (SKT) framework to allow creating pseudo-hyperspectral RS images from the available RS multispectral ones without the need for the real pairs of RS multispectral and hyperspectral images, typically required by existing RS spectral enhancement methods. Specifically, an auto-encoder is firstly trained based on the available pairs of natural hyperspectral imagery and its multispectral counterparts, and then calibrated via the available RS multispectral images. The finally obtained decoder module is used to generate the pseudo-hyperspectral image from an input RS multispectral image. We further propose a multi-spectrum collaborative CD (MCCD) framework which leverages both the real multispectral images and the pseudo hyperspectral images generated from them in a collaborative way to achieve performance improvement. Extensive experiments on two large-scale RS CD data sets and eight existing deep learning-based CD methods demonstrate the stronger efficacy of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3346879</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1394-4724</orcidid><orcidid>https://orcid.org/0000-0001-7693-051X</orcidid><orcidid>https://orcid.org/0000-0002-9768-516X</orcidid><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid><orcidid>https://orcid.org/0000-0002-3714-0600</orcidid><orcidid>https://orcid.org/0000-0001-6631-1651</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024-01, Vol.62, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10373904 |
source | IEEE Electronic Library (IEL) |
subjects | Change detection Collaboration Data augmentation Deep learning Detection Feature extraction Hyperspectral imaging Image enhancement Image sensors Imagery Knowledge management Knowledge transfer Land cover Performance enhancement Remote sensing Sensors Spatial resolution Spectral resolution Task analysis VHR remote sensing images |
title | Spectral Knowledge Transfer for Remote Sensing Change Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Knowledge%20Transfer%20for%20Remote%20Sensing%20Change%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Hanhong&rft.date=2024-01-01&rft.volume=62&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3346879&rft_dat=%3Cproquest_RIE%3E2912941879%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912941879&rft_id=info:pmid/&rft_ieee_id=10373904&rfr_iscdi=true |