Spectral Knowledge Transfer for Remote Sensing Change Detection

Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024-01, Vol.62, p.1-1
Hauptverfasser: Zheng, Hanhong, Li, Dongyang, Zhang, Mingyang, Gong, Maoguo, Qin, A. K., Liu, Tongfei, Jiang, Fenlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Zheng, Hanhong
Li, Dongyang
Zhang, Mingyang
Gong, Maoguo
Qin, A. K.
Liu, Tongfei
Jiang, Fenlong
description Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible, using it to enhance the spectral information of RS multispectral imagery for CD can improve the performance. To achieve this, we propose a spectral knowledge transfer (SKT) framework to allow creating pseudo-hyperspectral RS images from the available RS multispectral ones without the need for the real pairs of RS multispectral and hyperspectral images, typically required by existing RS spectral enhancement methods. Specifically, an auto-encoder is firstly trained based on the available pairs of natural hyperspectral imagery and its multispectral counterparts, and then calibrated via the available RS multispectral images. The finally obtained decoder module is used to generate the pseudo-hyperspectral image from an input RS multispectral image. We further propose a multi-spectrum collaborative CD (MCCD) framework which leverages both the real multispectral images and the pseudo hyperspectral images generated from them in a collaborative way to achieve performance improvement. Extensive experiments on two large-scale RS CD data sets and eight existing deep learning-based CD methods demonstrate the stronger efficacy of the proposed method.
doi_str_mv 10.1109/TGRS.2023.3346879
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10373904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10373904</ieee_id><sourcerecordid>2912941879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-5ca97a038858716d4db4c793bc17b57fb2e32df551a092b8603d84e1829a89593</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKs_QPCw4HlrJh-b5CRSaxULQlvPIbs7W7e0SU22iP_eLe3B01zem2EeIbdARwDUPCyn88WIUcZHnItCK3NGBiClzmkhxDkZUDBFzrRhl-QqpTWlICSoAXlc7LDqottk7z78bLBeYbaMzqcGY9aEmM1xGzrMFuhT61fZ-Mv5HnnGrtfa4K_JReM2CW9Oc0g-XybL8Ws--5i-jZ9mecVE0eWyckY5yrWWWkFRi7oUlTK8rECVUjUlQ87qRkpw1LBSF5TXWiBoZpw20vAhuT_u3cXwvcfU2XXYR9-ftMwAMwL6n3sKjlQVQ0oRG7uL7dbFXwvUHjrZQyd76GRPnXrn7ui0iPiP54obKvgfDYxisg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912941879</pqid></control><display><type>article</type><title>Spectral Knowledge Transfer for Remote Sensing Change Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Hanhong ; Li, Dongyang ; Zhang, Mingyang ; Gong, Maoguo ; Qin, A. K. ; Liu, Tongfei ; Jiang, Fenlong</creator><creatorcontrib>Zheng, Hanhong ; Li, Dongyang ; Zhang, Mingyang ; Gong, Maoguo ; Qin, A. K. ; Liu, Tongfei ; Jiang, Fenlong</creatorcontrib><description>Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible, using it to enhance the spectral information of RS multispectral imagery for CD can improve the performance. To achieve this, we propose a spectral knowledge transfer (SKT) framework to allow creating pseudo-hyperspectral RS images from the available RS multispectral ones without the need for the real pairs of RS multispectral and hyperspectral images, typically required by existing RS spectral enhancement methods. Specifically, an auto-encoder is firstly trained based on the available pairs of natural hyperspectral imagery and its multispectral counterparts, and then calibrated via the available RS multispectral images. The finally obtained decoder module is used to generate the pseudo-hyperspectral image from an input RS multispectral image. We further propose a multi-spectrum collaborative CD (MCCD) framework which leverages both the real multispectral images and the pseudo hyperspectral images generated from them in a collaborative way to achieve performance improvement. Extensive experiments on two large-scale RS CD data sets and eight existing deep learning-based CD methods demonstrate the stronger efficacy of the proposed method.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3346879</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Change detection ; Collaboration ; Data augmentation ; Deep learning ; Detection ; Feature extraction ; Hyperspectral imaging ; Image enhancement ; Image sensors ; Imagery ; Knowledge management ; Knowledge transfer ; Land cover ; Performance enhancement ; Remote sensing ; Sensors ; Spatial resolution ; Spectral resolution ; Task analysis ; VHR remote sensing images</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024-01, Vol.62, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-5ca97a038858716d4db4c793bc17b57fb2e32df551a092b8603d84e1829a89593</cites><orcidid>0000-0003-1394-4724 ; 0000-0001-7693-051X ; 0000-0002-9768-516X ; 0000-0002-0415-8556 ; 0000-0002-3714-0600 ; 0000-0001-6631-1651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10373904$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10373904$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Hanhong</creatorcontrib><creatorcontrib>Li, Dongyang</creatorcontrib><creatorcontrib>Zhang, Mingyang</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Qin, A. K.</creatorcontrib><creatorcontrib>Liu, Tongfei</creatorcontrib><creatorcontrib>Jiang, Fenlong</creatorcontrib><title>Spectral Knowledge Transfer for Remote Sensing Change Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible, using it to enhance the spectral information of RS multispectral imagery for CD can improve the performance. To achieve this, we propose a spectral knowledge transfer (SKT) framework to allow creating pseudo-hyperspectral RS images from the available RS multispectral ones without the need for the real pairs of RS multispectral and hyperspectral images, typically required by existing RS spectral enhancement methods. Specifically, an auto-encoder is firstly trained based on the available pairs of natural hyperspectral imagery and its multispectral counterparts, and then calibrated via the available RS multispectral images. The finally obtained decoder module is used to generate the pseudo-hyperspectral image from an input RS multispectral image. We further propose a multi-spectrum collaborative CD (MCCD) framework which leverages both the real multispectral images and the pseudo hyperspectral images generated from them in a collaborative way to achieve performance improvement. Extensive experiments on two large-scale RS CD data sets and eight existing deep learning-based CD methods demonstrate the stronger efficacy of the proposed method.</description><subject>Change detection</subject><subject>Collaboration</subject><subject>Data augmentation</subject><subject>Deep learning</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Image enhancement</subject><subject>Image sensors</subject><subject>Imagery</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>Land cover</subject><subject>Performance enhancement</subject><subject>Remote sensing</subject><subject>Sensors</subject><subject>Spatial resolution</subject><subject>Spectral resolution</subject><subject>Task analysis</subject><subject>VHR remote sensing images</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWKs_QPCw4HlrJh-b5CRSaxULQlvPIbs7W7e0SU22iP_eLe3B01zem2EeIbdARwDUPCyn88WIUcZHnItCK3NGBiClzmkhxDkZUDBFzrRhl-QqpTWlICSoAXlc7LDqottk7z78bLBeYbaMzqcGY9aEmM1xGzrMFuhT61fZ-Mv5HnnGrtfa4K_JReM2CW9Oc0g-XybL8Ws--5i-jZ9mecVE0eWyckY5yrWWWkFRi7oUlTK8rECVUjUlQ87qRkpw1LBSF5TXWiBoZpw20vAhuT_u3cXwvcfU2XXYR9-ftMwAMwL6n3sKjlQVQ0oRG7uL7dbFXwvUHjrZQyd76GRPnXrn7ui0iPiP54obKvgfDYxisg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zheng, Hanhong</creator><creator>Li, Dongyang</creator><creator>Zhang, Mingyang</creator><creator>Gong, Maoguo</creator><creator>Qin, A. K.</creator><creator>Liu, Tongfei</creator><creator>Jiang, Fenlong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1394-4724</orcidid><orcidid>https://orcid.org/0000-0001-7693-051X</orcidid><orcidid>https://orcid.org/0000-0002-9768-516X</orcidid><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid><orcidid>https://orcid.org/0000-0002-3714-0600</orcidid><orcidid>https://orcid.org/0000-0001-6631-1651</orcidid></search><sort><creationdate>20240101</creationdate><title>Spectral Knowledge Transfer for Remote Sensing Change Detection</title><author>Zheng, Hanhong ; Li, Dongyang ; Zhang, Mingyang ; Gong, Maoguo ; Qin, A. K. ; Liu, Tongfei ; Jiang, Fenlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-5ca97a038858716d4db4c793bc17b57fb2e32df551a092b8603d84e1829a89593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Change detection</topic><topic>Collaboration</topic><topic>Data augmentation</topic><topic>Deep learning</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Image enhancement</topic><topic>Image sensors</topic><topic>Imagery</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>Land cover</topic><topic>Performance enhancement</topic><topic>Remote sensing</topic><topic>Sensors</topic><topic>Spatial resolution</topic><topic>Spectral resolution</topic><topic>Task analysis</topic><topic>VHR remote sensing images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hanhong</creatorcontrib><creatorcontrib>Li, Dongyang</creatorcontrib><creatorcontrib>Zhang, Mingyang</creatorcontrib><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Qin, A. K.</creatorcontrib><creatorcontrib>Liu, Tongfei</creatorcontrib><creatorcontrib>Jiang, Fenlong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Hanhong</au><au>Li, Dongyang</au><au>Zhang, Mingyang</au><au>Gong, Maoguo</au><au>Qin, A. K.</au><au>Liu, Tongfei</au><au>Jiang, Fenlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Knowledge Transfer for Remote Sensing Change Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Change detection (CD) in multispectral remote sensing (RS) imagery suffers from the low spectral resolution which can lead to degraded recognition of change information from land cover objects. Considering that natural hyperspectral imagery is much higher in spectral resolution and more accessible, using it to enhance the spectral information of RS multispectral imagery for CD can improve the performance. To achieve this, we propose a spectral knowledge transfer (SKT) framework to allow creating pseudo-hyperspectral RS images from the available RS multispectral ones without the need for the real pairs of RS multispectral and hyperspectral images, typically required by existing RS spectral enhancement methods. Specifically, an auto-encoder is firstly trained based on the available pairs of natural hyperspectral imagery and its multispectral counterparts, and then calibrated via the available RS multispectral images. The finally obtained decoder module is used to generate the pseudo-hyperspectral image from an input RS multispectral image. We further propose a multi-spectrum collaborative CD (MCCD) framework which leverages both the real multispectral images and the pseudo hyperspectral images generated from them in a collaborative way to achieve performance improvement. Extensive experiments on two large-scale RS CD data sets and eight existing deep learning-based CD methods demonstrate the stronger efficacy of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3346879</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1394-4724</orcidid><orcidid>https://orcid.org/0000-0001-7693-051X</orcidid><orcidid>https://orcid.org/0000-0002-9768-516X</orcidid><orcidid>https://orcid.org/0000-0002-0415-8556</orcidid><orcidid>https://orcid.org/0000-0002-3714-0600</orcidid><orcidid>https://orcid.org/0000-0001-6631-1651</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024-01, Vol.62, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10373904
source IEEE Electronic Library (IEL)
subjects Change detection
Collaboration
Data augmentation
Deep learning
Detection
Feature extraction
Hyperspectral imaging
Image enhancement
Image sensors
Imagery
Knowledge management
Knowledge transfer
Land cover
Performance enhancement
Remote sensing
Sensors
Spatial resolution
Spectral resolution
Task analysis
VHR remote sensing images
title Spectral Knowledge Transfer for Remote Sensing Change Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Knowledge%20Transfer%20for%20Remote%20Sensing%20Change%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Hanhong&rft.date=2024-01-01&rft.volume=62&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3346879&rft_dat=%3Cproquest_RIE%3E2912941879%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912941879&rft_id=info:pmid/&rft_ieee_id=10373904&rfr_iscdi=true