Investigation of Power Capacity in the Output Window for a High-Power W-Band Gyro-TWT

To further enhance the average output power of the W -band gyrotron traveling-wave tube (gyro-TWT), the power capacity of the output window is investigated in this article. In the case of the original meta-surface dielectric window (MSDW), the primary factors leading to window failure and air leakag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-02, Vol.71 (2), p.1-7
Hauptverfasser: Lu, Chaoxuan, Jiang, Wei, Zhao, Dajun, Liu, Guo, Wang, Jianxun, Pu, Youlei, Zhou, Wei, Wang, Tieyang, Song, Fangfang, Cheng, Yu, Zhang, Xihu, Luo, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 71
creator Lu, Chaoxuan
Jiang, Wei
Zhao, Dajun
Liu, Guo
Wang, Jianxun
Pu, Youlei
Zhou, Wei
Wang, Tieyang
Song, Fangfang
Cheng, Yu
Zhang, Xihu
Luo, Yong
description To further enhance the average output power of the W -band gyrotron traveling-wave tube (gyro-TWT), the power capacity of the output window is investigated in this article. In the case of the original meta-surface dielectric window (MSDW), the primary factors leading to window failure and air leakage under high-power conditions are the high residual thermal stress at the weld surface. Based on the experimental phenomenon, the derived reference threshold for braze surface fracture is 113 MPa. Then, the idea of a multiwavelength window and the addition of boundary heat transfer channels are proposed. Thermal analysis results show that the maximum temperature and side thermal stress are 102 ^{\circ} C and 61 MPa, respectively. The novel cooling system demonstrates a 28% improvement in cooling efficiency compared to the initial structure. The power capacity of the thickened MSDW is 26 kW and increased by 44%. The output window is fabricated and experimented. The mechanical strength and the vacuum seal of the window are guaranteed by the new assembly technology. Cold test results validate that \textit{S}_{\text{11}} is lower than - 15 dB in the operating bandwidth and are in good agreement with the simulation results. These investigations provide insights for achieving the stable operation of high-frequency gyro-TWTs at high power levels.
doi_str_mv 10.1109/TED.2023.3341929
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10371229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10371229</ieee_id><sourcerecordid>2918025807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-9b7a37cf7cb8a35285d9bbf179cc2ba1082e0c5aaf4dc6d965bf94fdd39c57293</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYnbxRxzHI5TSVqpUhlQdLcexW1cQByeh6r8nVTownU73vHe6B4BHgieEYPmSz94nFFM2YSwhksorMCKcCyTTJL0GI4xJhiTL2C24a5pD36ZJQkdgs6x-bdP6nW59qGBw8DMcbYRTXWvj2xP0FWz3Fq67tu5auPVVGY7QhQg1XPjdHg34Fr3pqoTzUwwo3-b34Mbpr8Y-XOoYbD5m-XSBVuv5cvq6QoYmvEWyEJoJ44QpMs04zXgpi8IRIY2hhSY4oxYbrrVLSpOWMuWFk4krSyYNF1SyMXge9tYx_HT9H-oQulj1JxWVJMOUZ1j0FB4oE0PTROtUHf23jidFsDrLU708dZanLvL6yNMQ8dbafzgThPbjP2oyals</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918025807</pqid></control><display><type>article</type><title>Investigation of Power Capacity in the Output Window for a High-Power W-Band Gyro-TWT</title><source>IEEE Electronic Library (IEL)</source><creator>Lu, Chaoxuan ; Jiang, Wei ; Zhao, Dajun ; Liu, Guo ; Wang, Jianxun ; Pu, Youlei ; Zhou, Wei ; Wang, Tieyang ; Song, Fangfang ; Cheng, Yu ; Zhang, Xihu ; Luo, Yong</creator><creatorcontrib>Lu, Chaoxuan ; Jiang, Wei ; Zhao, Dajun ; Liu, Guo ; Wang, Jianxun ; Pu, Youlei ; Zhou, Wei ; Wang, Tieyang ; Song, Fangfang ; Cheng, Yu ; Zhang, Xihu ; Luo, Yong</creatorcontrib><description><![CDATA[To further enhance the average output power of the W -band gyrotron traveling-wave tube (gyro-TWT), the power capacity of the output window is investigated in this article. In the case of the original meta-surface dielectric window (MSDW), the primary factors leading to window failure and air leakage under high-power conditions are the high residual thermal stress at the weld surface. Based on the experimental phenomenon, the derived reference threshold for braze surface fracture is 113 MPa. Then, the idea of a multiwavelength window and the addition of boundary heat transfer channels are proposed. Thermal analysis results show that the maximum temperature and side thermal stress are 102 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C and 61 MPa, respectively. The novel cooling system demonstrates a 28% improvement in cooling efficiency compared to the initial structure. The power capacity of the thickened MSDW is 26 kW and increased by 44%. The output window is fabricated and experimented. The mechanical strength and the vacuum seal of the window are guaranteed by the new assembly technology. Cold test results validate that <inline-formula> <tex-math notation="LaTeX">\textit{S}_{\text{11}}</tex-math> </inline-formula> is lower than <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15 dB in the operating bandwidth and are in good agreement with the simulation results. These investigations provide insights for achieving the stable operation of high-frequency gyro-TWTs at high power levels.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3341929</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Cooling systems ; Electromagnetic heating ; Electrons ; High power capacity ; meta-surface dielectric window (MSDW) ; Microwave circuits ; multiwavelength ; Power generation ; Stress ; Thermal analysis ; Thermal stress ; Thermal stresses ; Traveling wave tubes ; Traveling waves ; W-band gyrotron traveling-wave tube (gyro-TWT)</subject><ispartof>IEEE transactions on electron devices, 2024-02, Vol.71 (2), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-9b7a37cf7cb8a35285d9bbf179cc2ba1082e0c5aaf4dc6d965bf94fdd39c57293</cites><orcidid>0000-0001-7438-4922 ; 0000-0002-2330-4002 ; 0000-0003-4564-6473 ; 0000-0002-1252-0949 ; 0000-0001-6721-0289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10371229$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10371229$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Chaoxuan</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Zhao, Dajun</creatorcontrib><creatorcontrib>Liu, Guo</creatorcontrib><creatorcontrib>Wang, Jianxun</creatorcontrib><creatorcontrib>Pu, Youlei</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Wang, Tieyang</creatorcontrib><creatorcontrib>Song, Fangfang</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Zhang, Xihu</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><title>Investigation of Power Capacity in the Output Window for a High-Power W-Band Gyro-TWT</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[To further enhance the average output power of the W -band gyrotron traveling-wave tube (gyro-TWT), the power capacity of the output window is investigated in this article. In the case of the original meta-surface dielectric window (MSDW), the primary factors leading to window failure and air leakage under high-power conditions are the high residual thermal stress at the weld surface. Based on the experimental phenomenon, the derived reference threshold for braze surface fracture is 113 MPa. Then, the idea of a multiwavelength window and the addition of boundary heat transfer channels are proposed. Thermal analysis results show that the maximum temperature and side thermal stress are 102 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C and 61 MPa, respectively. The novel cooling system demonstrates a 28% improvement in cooling efficiency compared to the initial structure. The power capacity of the thickened MSDW is 26 kW and increased by 44%. The output window is fabricated and experimented. The mechanical strength and the vacuum seal of the window are guaranteed by the new assembly technology. Cold test results validate that <inline-formula> <tex-math notation="LaTeX">\textit{S}_{\text{11}}</tex-math> </inline-formula> is lower than <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15 dB in the operating bandwidth and are in good agreement with the simulation results. These investigations provide insights for achieving the stable operation of high-frequency gyro-TWTs at high power levels.]]></description><subject>Bandwidth</subject><subject>Cooling systems</subject><subject>Electromagnetic heating</subject><subject>Electrons</subject><subject>High power capacity</subject><subject>meta-surface dielectric window (MSDW)</subject><subject>Microwave circuits</subject><subject>multiwavelength</subject><subject>Power generation</subject><subject>Stress</subject><subject>Thermal analysis</subject><subject>Thermal stress</subject><subject>Thermal stresses</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>W-band gyrotron traveling-wave tube (gyro-TWT)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYnbxRxzHI5TSVqpUhlQdLcexW1cQByeh6r8nVTownU73vHe6B4BHgieEYPmSz94nFFM2YSwhksorMCKcCyTTJL0GI4xJhiTL2C24a5pD36ZJQkdgs6x-bdP6nW59qGBw8DMcbYRTXWvj2xP0FWz3Fq67tu5auPVVGY7QhQg1XPjdHg34Fr3pqoTzUwwo3-b34Mbpr8Y-XOoYbD5m-XSBVuv5cvq6QoYmvEWyEJoJ44QpMs04zXgpi8IRIY2hhSY4oxYbrrVLSpOWMuWFk4krSyYNF1SyMXge9tYx_HT9H-oQulj1JxWVJMOUZ1j0FB4oE0PTROtUHf23jidFsDrLU708dZanLvL6yNMQ8dbafzgThPbjP2oyals</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lu, Chaoxuan</creator><creator>Jiang, Wei</creator><creator>Zhao, Dajun</creator><creator>Liu, Guo</creator><creator>Wang, Jianxun</creator><creator>Pu, Youlei</creator><creator>Zhou, Wei</creator><creator>Wang, Tieyang</creator><creator>Song, Fangfang</creator><creator>Cheng, Yu</creator><creator>Zhang, Xihu</creator><creator>Luo, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7438-4922</orcidid><orcidid>https://orcid.org/0000-0002-2330-4002</orcidid><orcidid>https://orcid.org/0000-0003-4564-6473</orcidid><orcidid>https://orcid.org/0000-0002-1252-0949</orcidid><orcidid>https://orcid.org/0000-0001-6721-0289</orcidid></search><sort><creationdate>20240201</creationdate><title>Investigation of Power Capacity in the Output Window for a High-Power W-Band Gyro-TWT</title><author>Lu, Chaoxuan ; Jiang, Wei ; Zhao, Dajun ; Liu, Guo ; Wang, Jianxun ; Pu, Youlei ; Zhou, Wei ; Wang, Tieyang ; Song, Fangfang ; Cheng, Yu ; Zhang, Xihu ; Luo, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-9b7a37cf7cb8a35285d9bbf179cc2ba1082e0c5aaf4dc6d965bf94fdd39c57293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidth</topic><topic>Cooling systems</topic><topic>Electromagnetic heating</topic><topic>Electrons</topic><topic>High power capacity</topic><topic>meta-surface dielectric window (MSDW)</topic><topic>Microwave circuits</topic><topic>multiwavelength</topic><topic>Power generation</topic><topic>Stress</topic><topic>Thermal analysis</topic><topic>Thermal stress</topic><topic>Thermal stresses</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>W-band gyrotron traveling-wave tube (gyro-TWT)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Chaoxuan</creatorcontrib><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Zhao, Dajun</creatorcontrib><creatorcontrib>Liu, Guo</creatorcontrib><creatorcontrib>Wang, Jianxun</creatorcontrib><creatorcontrib>Pu, Youlei</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Wang, Tieyang</creatorcontrib><creatorcontrib>Song, Fangfang</creatorcontrib><creatorcontrib>Cheng, Yu</creatorcontrib><creatorcontrib>Zhang, Xihu</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Chaoxuan</au><au>Jiang, Wei</au><au>Zhao, Dajun</au><au>Liu, Guo</au><au>Wang, Jianxun</au><au>Pu, Youlei</au><au>Zhou, Wei</au><au>Wang, Tieyang</au><au>Song, Fangfang</au><au>Cheng, Yu</au><au>Zhang, Xihu</au><au>Luo, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Power Capacity in the Output Window for a High-Power W-Band Gyro-TWT</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>71</volume><issue>2</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[To further enhance the average output power of the W -band gyrotron traveling-wave tube (gyro-TWT), the power capacity of the output window is investigated in this article. In the case of the original meta-surface dielectric window (MSDW), the primary factors leading to window failure and air leakage under high-power conditions are the high residual thermal stress at the weld surface. Based on the experimental phenomenon, the derived reference threshold for braze surface fracture is 113 MPa. Then, the idea of a multiwavelength window and the addition of boundary heat transfer channels are proposed. Thermal analysis results show that the maximum temperature and side thermal stress are 102 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C and 61 MPa, respectively. The novel cooling system demonstrates a 28% improvement in cooling efficiency compared to the initial structure. The power capacity of the thickened MSDW is 26 kW and increased by 44%. The output window is fabricated and experimented. The mechanical strength and the vacuum seal of the window are guaranteed by the new assembly technology. Cold test results validate that <inline-formula> <tex-math notation="LaTeX">\textit{S}_{\text{11}}</tex-math> </inline-formula> is lower than <inline-formula> <tex-math notation="LaTeX">-</tex-math> </inline-formula>15 dB in the operating bandwidth and are in good agreement with the simulation results. These investigations provide insights for achieving the stable operation of high-frequency gyro-TWTs at high power levels.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3341929</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7438-4922</orcidid><orcidid>https://orcid.org/0000-0002-2330-4002</orcidid><orcidid>https://orcid.org/0000-0003-4564-6473</orcidid><orcidid>https://orcid.org/0000-0002-1252-0949</orcidid><orcidid>https://orcid.org/0000-0001-6721-0289</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-02, Vol.71 (2), p.1-7
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_10371229
source IEEE Electronic Library (IEL)
subjects Bandwidth
Cooling systems
Electromagnetic heating
Electrons
High power capacity
meta-surface dielectric window (MSDW)
Microwave circuits
multiwavelength
Power generation
Stress
Thermal analysis
Thermal stress
Thermal stresses
Traveling wave tubes
Traveling waves
W-band gyrotron traveling-wave tube (gyro-TWT)
title Investigation of Power Capacity in the Output Window for a High-Power W-Band Gyro-TWT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Power%20Capacity%20in%20the%20Output%20Window%20for%20a%20High-Power%20W-Band%20Gyro-TWT&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Lu,%20Chaoxuan&rft.date=2024-02-01&rft.volume=71&rft.issue=2&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3341929&rft_dat=%3Cproquest_RIE%3E2918025807%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918025807&rft_id=info:pmid/&rft_ieee_id=10371229&rfr_iscdi=true