Further Results on Fast Finite-Time Stability Criteria and Its Application in Circuit System

This brief presents a novel approach for fast finite-time adaptive control of uncertain nonlinear systems. First, practical fast finite-time stability criteria are established for both deterministic nonlinear systems and stochastic nonlinear systems with rigorous proofs, taking the case of \beta =1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2024-04, Vol.71 (4), p.2284-2288
Hauptverfasser: Shao, Yu, Li, Shihua, Xu, Shengyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2288
container_issue 4
container_start_page 2284
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 71
creator Shao, Yu
Li, Shihua
Xu, Shengyuan
description This brief presents a novel approach for fast finite-time adaptive control of uncertain nonlinear systems. First, practical fast finite-time stability criteria are established for both deterministic nonlinear systems and stochastic nonlinear systems with rigorous proofs, taking the case of \beta =1 in literature as a special case. A useful corollary is also explored to address a wider range of issues. These new criteria not only apply to generalized uncertain nonlinear systems with certain and uncertain components but also provide a new perspective to reduce convergence time while handling positive error \Delta . Additionally, simulation results for the proposed criteria applied to a circuit system are provided. The results show that the proposed approach allows for fast convergence time, and the convergence time can be adjusted by the initial value.
doi_str_mv 10.1109/TCSII.2023.3344517
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10365690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10365690</ieee_id><sourcerecordid>2995313981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-39bab7dfdb03eaf6b4a1d5f306a74c1c6ee82b049e02d66cbc41e9c2dcd164a13</originalsourceid><addsrcrecordid>eNpNkM9LwzAUgIMoOKf_gHgIeO7MrzbLcRSrhYHg5k0IafqKGV1bk_Sw_97WefCUR_i-9-BD6J6SFaVEPe3zXVmuGGF8xbkQKZUXaEHTdJ1wqejlPAuVSCnkNboJ4UAIU4SzBfosRh-_wON3CGMbA-47XJgQceE6FyHZuyPgXTSVa1084dxPn94ZbLoalxO-GYbWWRPd5LkO587b0UW8O4UIx1t01Zg2wN3fu0QfxfM-f022by9lvtkmlgkZE64qU8m6qSvCwTRZJQyt04aTzEhhqc0A1qwiQgFhdZbZygoKyrLa1jSbWL5Ej-e9g--_RwhRH_rRd9NJzZRKOeVqPVPsTFnfh-Ch0YN3R-NPmhI9V9S_FfVcUf9VnKSHs-QA4J_AszSbCv4AvddvbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995313981</pqid></control><display><type>article</type><title>Further Results on Fast Finite-Time Stability Criteria and Its Application in Circuit System</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Yu ; Li, Shihua ; Xu, Shengyuan</creator><creatorcontrib>Shao, Yu ; Li, Shihua ; Xu, Shengyuan</creatorcontrib><description><![CDATA[This brief presents a novel approach for fast finite-time adaptive control of uncertain nonlinear systems. First, practical fast finite-time stability criteria are established for both deterministic nonlinear systems and stochastic nonlinear systems with rigorous proofs, taking the case of <inline-formula> <tex-math notation="LaTeX">\beta =1 </tex-math></inline-formula> in literature as a special case. A useful corollary is also explored to address a wider range of issues. These new criteria not only apply to generalized uncertain nonlinear systems with certain and uncertain components but also provide a new perspective to reduce convergence time while handling positive error <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. Additionally, simulation results for the proposed criteria applied to a circuit system are provided. The results show that the proposed approach allows for fast convergence time, and the convergence time can be adjusted by the initial value.]]></description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2023.3344517</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Asymptotic stability ; Circuit stability ; circuit system ; Convergence ; Fast finite-time stability ; Nonlinear control ; Nonlinear systems ; Stability criteria ; stochastic nonlinear system ; Stochastic systems ; Thermal stability ; uncertain nonlinearity ; Uncertainty</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2024-04, Vol.71 (4), p.2284-2288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-39bab7dfdb03eaf6b4a1d5f306a74c1c6ee82b049e02d66cbc41e9c2dcd164a13</cites><orcidid>0000-0001-9044-7137 ; 0000-0001-8900-6246 ; 0000-0002-3015-0662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10365690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10365690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shao, Yu</creatorcontrib><creatorcontrib>Li, Shihua</creatorcontrib><creatorcontrib>Xu, Shengyuan</creatorcontrib><title>Further Results on Fast Finite-Time Stability Criteria and Its Application in Circuit System</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description><![CDATA[This brief presents a novel approach for fast finite-time adaptive control of uncertain nonlinear systems. First, practical fast finite-time stability criteria are established for both deterministic nonlinear systems and stochastic nonlinear systems with rigorous proofs, taking the case of <inline-formula> <tex-math notation="LaTeX">\beta =1 </tex-math></inline-formula> in literature as a special case. A useful corollary is also explored to address a wider range of issues. These new criteria not only apply to generalized uncertain nonlinear systems with certain and uncertain components but also provide a new perspective to reduce convergence time while handling positive error <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. Additionally, simulation results for the proposed criteria applied to a circuit system are provided. The results show that the proposed approach allows for fast convergence time, and the convergence time can be adjusted by the initial value.]]></description><subject>Adaptive control</subject><subject>Asymptotic stability</subject><subject>Circuit stability</subject><subject>circuit system</subject><subject>Convergence</subject><subject>Fast finite-time stability</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Stability criteria</subject><subject>stochastic nonlinear system</subject><subject>Stochastic systems</subject><subject>Thermal stability</subject><subject>uncertain nonlinearity</subject><subject>Uncertainty</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUgIMoOKf_gHgIeO7MrzbLcRSrhYHg5k0IafqKGV1bk_Sw_97WefCUR_i-9-BD6J6SFaVEPe3zXVmuGGF8xbkQKZUXaEHTdJ1wqejlPAuVSCnkNboJ4UAIU4SzBfosRh-_wON3CGMbA-47XJgQceE6FyHZuyPgXTSVa1084dxPn94ZbLoalxO-GYbWWRPd5LkO587b0UW8O4UIx1t01Zg2wN3fu0QfxfM-f022by9lvtkmlgkZE64qU8m6qSvCwTRZJQyt04aTzEhhqc0A1qwiQgFhdZbZygoKyrLa1jSbWL5Ej-e9g--_RwhRH_rRd9NJzZRKOeVqPVPsTFnfh-Ch0YN3R-NPmhI9V9S_FfVcUf9VnKSHs-QA4J_AszSbCv4AvddvbA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Shao, Yu</creator><creator>Li, Shihua</creator><creator>Xu, Shengyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9044-7137</orcidid><orcidid>https://orcid.org/0000-0001-8900-6246</orcidid><orcidid>https://orcid.org/0000-0002-3015-0662</orcidid></search><sort><creationdate>20240401</creationdate><title>Further Results on Fast Finite-Time Stability Criteria and Its Application in Circuit System</title><author>Shao, Yu ; Li, Shihua ; Xu, Shengyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-39bab7dfdb03eaf6b4a1d5f306a74c1c6ee82b049e02d66cbc41e9c2dcd164a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Asymptotic stability</topic><topic>Circuit stability</topic><topic>circuit system</topic><topic>Convergence</topic><topic>Fast finite-time stability</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Stability criteria</topic><topic>stochastic nonlinear system</topic><topic>Stochastic systems</topic><topic>Thermal stability</topic><topic>uncertain nonlinearity</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Yu</creatorcontrib><creatorcontrib>Li, Shihua</creatorcontrib><creatorcontrib>Xu, Shengyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shao, Yu</au><au>Li, Shihua</au><au>Xu, Shengyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further Results on Fast Finite-Time Stability Criteria and Its Application in Circuit System</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>71</volume><issue>4</issue><spage>2284</spage><epage>2288</epage><pages>2284-2288</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract><![CDATA[This brief presents a novel approach for fast finite-time adaptive control of uncertain nonlinear systems. First, practical fast finite-time stability criteria are established for both deterministic nonlinear systems and stochastic nonlinear systems with rigorous proofs, taking the case of <inline-formula> <tex-math notation="LaTeX">\beta =1 </tex-math></inline-formula> in literature as a special case. A useful corollary is also explored to address a wider range of issues. These new criteria not only apply to generalized uncertain nonlinear systems with certain and uncertain components but also provide a new perspective to reduce convergence time while handling positive error <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. Additionally, simulation results for the proposed criteria applied to a circuit system are provided. The results show that the proposed approach allows for fast convergence time, and the convergence time can be adjusted by the initial value.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2023.3344517</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9044-7137</orcidid><orcidid>https://orcid.org/0000-0001-8900-6246</orcidid><orcidid>https://orcid.org/0000-0002-3015-0662</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2024-04, Vol.71 (4), p.2284-2288
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_10365690
source IEEE Electronic Library (IEL)
subjects Adaptive control
Asymptotic stability
Circuit stability
circuit system
Convergence
Fast finite-time stability
Nonlinear control
Nonlinear systems
Stability criteria
stochastic nonlinear system
Stochastic systems
Thermal stability
uncertain nonlinearity
Uncertainty
title Further Results on Fast Finite-Time Stability Criteria and Its Application in Circuit System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20Results%20on%20Fast%20Finite-Time%20Stability%20Criteria%20and%20Its%20Application%20in%20Circuit%20System&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Shao,%20Yu&rft.date=2024-04-01&rft.volume=71&rft.issue=4&rft.spage=2284&rft.epage=2288&rft.pages=2284-2288&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2023.3344517&rft_dat=%3Cproquest_RIE%3E2995313981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995313981&rft_id=info:pmid/&rft_ieee_id=10365690&rfr_iscdi=true