A Current-Fed Transformer-Based High-Gain DC-DC Converter With Inverse Gain Characteristic for Renewable Energy Applications
This article proposes a current-fed high-gain high-efficiency dc-dc converter for renewable energy applications such as photovoltaic energy. The converter is based on the modified SEPIC, in which the secondary inductor is replaced with a built-in transformer with differentially connected windings (m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2024-09, Vol.71 (9), p.10864-10876 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10876 |
---|---|
container_issue | 9 |
container_start_page | 10864 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 71 |
creator | Barbosa, Eduardo Augusto Oliveira Martins, Mario Lucio da Silva Limongi, Leonardo Rodrigues Neto, Rafael Cavalcanti Barbosa, Eduardo Jose |
description | This article proposes a current-fed high-gain high-efficiency dc-dc converter for renewable energy applications such as photovoltaic energy. The converter is based on the modified SEPIC, in which the secondary inductor is replaced with a built-in transformer with differentially connected windings (mSEPIC-DBT). The high voltage gain is achieved through a magnetic-coupling-based VMC, in which the built-in transformer is paired to diodes and capacitors. The capacitors, alongside the leakage inductances of the transformer, form a resonant tank, allowing for the zero-current switching of the diodes, while also blocking dc currents from circulating through the transformer windings, which, in turn, allows employing gapless cores for the transformer, reducing its size. The converter operational stages are discussed and steady-state analysis is performed, from which the design guidelines are derived. The theoretical analyses are validated by an experimental 300-W, 50-kHz laboratory prototype. The experimental results show a full-load efficiency of 96.6% and a maximum efficiency of 96.8% at 90% of the full load, which demonstrate that the proposed converter is a strong candidate for applications that require high voltage gains. |
doi_str_mv | 10.1109/TIE.2023.3340184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10364242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10364242</ieee_id><sourcerecordid>3064702675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-c798aa256025b79694922fa5cd2cfe874bf0fedfba858bebd3092a4cf1152da83</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKt3Dx4CnlOTbLIfx7r2CwqCVDyGbHbSprTZmmyVgj_ere3B0zAzzzsDD0L3jA4Yo8XTYjYacMqTQZIIynJxgXpMyowUhcgvUY_yLCeUivQa3cS4ppQJyWQP_QxxuQ8BfEvGUONF0D7aJmwhkGcdu8nULVdkop3HLyV5KXHZ-C8ILQT84doVnh27CPiPKFc6aNPtXGydwd0d_AYevnW1ATzyEJYHPNztNs7o1jU-3qIrqzcR7s61j97Ho0U5JfPXyawczolhmWyJyYpcay5TymWVFWkhCs6tlqbmxkKeicpSC7WtdC7zCqo6oQXXwljGJK91nvTR4-nuLjSfe4itWjf74LuXKqGpyChPM9lR9ESZ0MQYwKpdcFsdDopRdXSsOsfq6FidHXeRh1PEAcA_PEkFFzz5BRzoeIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064702675</pqid></control><display><type>article</type><title>A Current-Fed Transformer-Based High-Gain DC-DC Converter With Inverse Gain Characteristic for Renewable Energy Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Barbosa, Eduardo Augusto Oliveira ; Martins, Mario Lucio da Silva ; Limongi, Leonardo Rodrigues ; Neto, Rafael Cavalcanti ; Barbosa, Eduardo Jose</creator><creatorcontrib>Barbosa, Eduardo Augusto Oliveira ; Martins, Mario Lucio da Silva ; Limongi, Leonardo Rodrigues ; Neto, Rafael Cavalcanti ; Barbosa, Eduardo Jose</creatorcontrib><description>This article proposes a current-fed high-gain high-efficiency dc-dc converter for renewable energy applications such as photovoltaic energy. The converter is based on the modified SEPIC, in which the secondary inductor is replaced with a built-in transformer with differentially connected windings (mSEPIC-DBT). The high voltage gain is achieved through a magnetic-coupling-based VMC, in which the built-in transformer is paired to diodes and capacitors. The capacitors, alongside the leakage inductances of the transformer, form a resonant tank, allowing for the zero-current switching of the diodes, while also blocking dc currents from circulating through the transformer windings, which, in turn, allows employing gapless cores for the transformer, reducing its size. The converter operational stages are discussed and steady-state analysis is performed, from which the design guidelines are derived. The theoretical analyses are validated by an experimental 300-W, 50-kHz laboratory prototype. The experimental results show a full-load efficiency of 96.6% and a maximum efficiency of 96.8% at 90% of the full load, which demonstrate that the proposed converter is a strong candidate for applications that require high voltage gains.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2023.3340184</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Coils (windings) ; Current-fed dc–dc converter ; DC-DC power converters ; Efficiency ; Full load ; High gain ; high step-up dc–dc converter ; High voltages ; Inductors ; Magnetic cores ; Magnetic resonance ; Renewable energy ; Renewable resources ; Switches ; Transformers ; Voltage control ; Voltage converters (DC to DC) ; Voltage gain ; voltage multiplier cell (VMC) ; Windings</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-09, Vol.71 (9), p.10864-10876</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-c798aa256025b79694922fa5cd2cfe874bf0fedfba858bebd3092a4cf1152da83</cites><orcidid>0000-0003-3955-0694 ; 0000-0002-7963-4051 ; 0000-0003-1728-8031 ; 0000-0002-0912-3571 ; 0000-0002-2055-0195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10364242$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10364242$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barbosa, Eduardo Augusto Oliveira</creatorcontrib><creatorcontrib>Martins, Mario Lucio da Silva</creatorcontrib><creatorcontrib>Limongi, Leonardo Rodrigues</creatorcontrib><creatorcontrib>Neto, Rafael Cavalcanti</creatorcontrib><creatorcontrib>Barbosa, Eduardo Jose</creatorcontrib><title>A Current-Fed Transformer-Based High-Gain DC-DC Converter With Inverse Gain Characteristic for Renewable Energy Applications</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article proposes a current-fed high-gain high-efficiency dc-dc converter for renewable energy applications such as photovoltaic energy. The converter is based on the modified SEPIC, in which the secondary inductor is replaced with a built-in transformer with differentially connected windings (mSEPIC-DBT). The high voltage gain is achieved through a magnetic-coupling-based VMC, in which the built-in transformer is paired to diodes and capacitors. The capacitors, alongside the leakage inductances of the transformer, form a resonant tank, allowing for the zero-current switching of the diodes, while also blocking dc currents from circulating through the transformer windings, which, in turn, allows employing gapless cores for the transformer, reducing its size. The converter operational stages are discussed and steady-state analysis is performed, from which the design guidelines are derived. The theoretical analyses are validated by an experimental 300-W, 50-kHz laboratory prototype. The experimental results show a full-load efficiency of 96.6% and a maximum efficiency of 96.8% at 90% of the full load, which demonstrate that the proposed converter is a strong candidate for applications that require high voltage gains.</description><subject>Capacitors</subject><subject>Coils (windings)</subject><subject>Current-fed dc–dc converter</subject><subject>DC-DC power converters</subject><subject>Efficiency</subject><subject>Full load</subject><subject>High gain</subject><subject>high step-up dc–dc converter</subject><subject>High voltages</subject><subject>Inductors</subject><subject>Magnetic cores</subject><subject>Magnetic resonance</subject><subject>Renewable energy</subject><subject>Renewable resources</subject><subject>Switches</subject><subject>Transformers</subject><subject>Voltage control</subject><subject>Voltage converters (DC to DC)</subject><subject>Voltage gain</subject><subject>voltage multiplier cell (VMC)</subject><subject>Windings</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKt3Dx4CnlOTbLIfx7r2CwqCVDyGbHbSprTZmmyVgj_ere3B0zAzzzsDD0L3jA4Yo8XTYjYacMqTQZIIynJxgXpMyowUhcgvUY_yLCeUivQa3cS4ppQJyWQP_QxxuQ8BfEvGUONF0D7aJmwhkGcdu8nULVdkop3HLyV5KXHZ-C8ILQT84doVnh27CPiPKFc6aNPtXGydwd0d_AYevnW1ATzyEJYHPNztNs7o1jU-3qIrqzcR7s61j97Ho0U5JfPXyawczolhmWyJyYpcay5TymWVFWkhCs6tlqbmxkKeicpSC7WtdC7zCqo6oQXXwljGJK91nvTR4-nuLjSfe4itWjf74LuXKqGpyChPM9lR9ESZ0MQYwKpdcFsdDopRdXSsOsfq6FidHXeRh1PEAcA_PEkFFzz5BRzoeIw</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Barbosa, Eduardo Augusto Oliveira</creator><creator>Martins, Mario Lucio da Silva</creator><creator>Limongi, Leonardo Rodrigues</creator><creator>Neto, Rafael Cavalcanti</creator><creator>Barbosa, Eduardo Jose</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3955-0694</orcidid><orcidid>https://orcid.org/0000-0002-7963-4051</orcidid><orcidid>https://orcid.org/0000-0003-1728-8031</orcidid><orcidid>https://orcid.org/0000-0002-0912-3571</orcidid><orcidid>https://orcid.org/0000-0002-2055-0195</orcidid></search><sort><creationdate>20240901</creationdate><title>A Current-Fed Transformer-Based High-Gain DC-DC Converter With Inverse Gain Characteristic for Renewable Energy Applications</title><author>Barbosa, Eduardo Augusto Oliveira ; Martins, Mario Lucio da Silva ; Limongi, Leonardo Rodrigues ; Neto, Rafael Cavalcanti ; Barbosa, Eduardo Jose</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-c798aa256025b79694922fa5cd2cfe874bf0fedfba858bebd3092a4cf1152da83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitors</topic><topic>Coils (windings)</topic><topic>Current-fed dc–dc converter</topic><topic>DC-DC power converters</topic><topic>Efficiency</topic><topic>Full load</topic><topic>High gain</topic><topic>high step-up dc–dc converter</topic><topic>High voltages</topic><topic>Inductors</topic><topic>Magnetic cores</topic><topic>Magnetic resonance</topic><topic>Renewable energy</topic><topic>Renewable resources</topic><topic>Switches</topic><topic>Transformers</topic><topic>Voltage control</topic><topic>Voltage converters (DC to DC)</topic><topic>Voltage gain</topic><topic>voltage multiplier cell (VMC)</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Eduardo Augusto Oliveira</creatorcontrib><creatorcontrib>Martins, Mario Lucio da Silva</creatorcontrib><creatorcontrib>Limongi, Leonardo Rodrigues</creatorcontrib><creatorcontrib>Neto, Rafael Cavalcanti</creatorcontrib><creatorcontrib>Barbosa, Eduardo Jose</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barbosa, Eduardo Augusto Oliveira</au><au>Martins, Mario Lucio da Silva</au><au>Limongi, Leonardo Rodrigues</au><au>Neto, Rafael Cavalcanti</au><au>Barbosa, Eduardo Jose</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Current-Fed Transformer-Based High-Gain DC-DC Converter With Inverse Gain Characteristic for Renewable Energy Applications</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>71</volume><issue>9</issue><spage>10864</spage><epage>10876</epage><pages>10864-10876</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article proposes a current-fed high-gain high-efficiency dc-dc converter for renewable energy applications such as photovoltaic energy. The converter is based on the modified SEPIC, in which the secondary inductor is replaced with a built-in transformer with differentially connected windings (mSEPIC-DBT). The high voltage gain is achieved through a magnetic-coupling-based VMC, in which the built-in transformer is paired to diodes and capacitors. The capacitors, alongside the leakage inductances of the transformer, form a resonant tank, allowing for the zero-current switching of the diodes, while also blocking dc currents from circulating through the transformer windings, which, in turn, allows employing gapless cores for the transformer, reducing its size. The converter operational stages are discussed and steady-state analysis is performed, from which the design guidelines are derived. The theoretical analyses are validated by an experimental 300-W, 50-kHz laboratory prototype. The experimental results show a full-load efficiency of 96.6% and a maximum efficiency of 96.8% at 90% of the full load, which demonstrate that the proposed converter is a strong candidate for applications that require high voltage gains.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2023.3340184</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3955-0694</orcidid><orcidid>https://orcid.org/0000-0002-7963-4051</orcidid><orcidid>https://orcid.org/0000-0003-1728-8031</orcidid><orcidid>https://orcid.org/0000-0002-0912-3571</orcidid><orcidid>https://orcid.org/0000-0002-2055-0195</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2024-09, Vol.71 (9), p.10864-10876 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_ieee_primary_10364242 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitors Coils (windings) Current-fed dc–dc converter DC-DC power converters Efficiency Full load High gain high step-up dc–dc converter High voltages Inductors Magnetic cores Magnetic resonance Renewable energy Renewable resources Switches Transformers Voltage control Voltage converters (DC to DC) Voltage gain voltage multiplier cell (VMC) Windings |
title | A Current-Fed Transformer-Based High-Gain DC-DC Converter With Inverse Gain Characteristic for Renewable Energy Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Current-Fed%20Transformer-Based%20High-Gain%20DC-DC%20Converter%20With%20Inverse%20Gain%20Characteristic%20for%20Renewable%20Energy%20Applications&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Barbosa,%20Eduardo%20Augusto%20Oliveira&rft.date=2024-09-01&rft.volume=71&rft.issue=9&rft.spage=10864&rft.epage=10876&rft.pages=10864-10876&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2023.3340184&rft_dat=%3Cproquest_RIE%3E3064702675%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3064702675&rft_id=info:pmid/&rft_ieee_id=10364242&rfr_iscdi=true |