Use of AI to Assess Control and Diseased Children at 10 Years of Age

This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Biala, Taher A, Ramahi, Ahmad, Ekenedirichukwu, Obianom, Li, Xin, Schlindwein, Fernando S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume 50
creator Biala, Taher A
Ramahi, Ahmad
Ekenedirichukwu, Obianom
Li, Xin
Schlindwein, Fernando S
description This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). These algorithms were applied to the task of classifying the two target groups while discerning the pivotal parameters contributing to their classification. The obtained results yielded classification accuracy scores of 92.89%, 89.89%, and 87.67% for QDA, LDA, and SVM, respectively. Notably, the analysis revealed that parameters related to birth weight held the most substantial influence in distinguishing between the two cohorts. In light of our conclusive findings, we recommend the utilization of Quadratic Discriminant Analysis (QDA) as a valuable tool for clinicians seeking to identify children at risk of IUGR disease. This research contributes to the enhancement of diagnostic methodologies in pediatric medicine, fostering more accurate and timely interventions for affected individuals.
doi_str_mv 10.22489/CinC.2023.421
format Conference Proceeding
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10364127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10364127</ieee_id><sourcerecordid>10364127</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-663072cb042d573e009b7a13cc0265603c47678eeb4496de6f2cee5801c8d4ed3</originalsourceid><addsrcrecordid>eNotjLtOwzAUQA0SElXJysTgH0i4vn6PVcqjUiUWKsFUOfYNGIUExVn4exD0LGc6h7FrAQ2icv62zWPbIKBsFIozVnnrndQgHWrU52yFEnXtnH25ZFUpH_CLts4bt2LbQyE-9Xyz48vEN6VQKbydxmWeBh7GxLe5UCiUePuehzTTyMPCBfBXCnP5K9_oil30YShUnbxmh_u75_ax3j897NrNvs5C-KU2RoLF2IHCpK0kAN_ZIGSMgEYbkFFZYx1Rp5Q3iUyPkUg7ENElRUmu2c3_NxPR8WvOn2H-PgqQRgm08gcUpkim</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Use of AI to Assess Control and Diseased Children at 10 Years of Age</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Biala, Taher A ; Ramahi, Ahmad ; Ekenedirichukwu, Obianom ; Li, Xin ; Schlindwein, Fernando S</creator><creatorcontrib>Biala, Taher A ; Ramahi, Ahmad ; Ekenedirichukwu, Obianom ; Li, Xin ; Schlindwein, Fernando S</creatorcontrib><description>This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). These algorithms were applied to the task of classifying the two target groups while discerning the pivotal parameters contributing to their classification. The obtained results yielded classification accuracy scores of 92.89%, 89.89%, and 87.67% for QDA, LDA, and SVM, respectively. Notably, the analysis revealed that parameters related to birth weight held the most substantial influence in distinguishing between the two cohorts. In light of our conclusive findings, we recommend the utilization of Quadratic Discriminant Analysis (QDA) as a valuable tool for clinicians seeking to identify children at risk of IUGR disease. This research contributes to the enhancement of diagnostic methodologies in pediatric medicine, fostering more accurate and timely interventions for affected individuals.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350382525</identifier><identifier>DOI: 10.22489/CinC.2023.421</identifier><language>eng</language><publisher>CinC</publisher><subject>Classification algorithms ; Computational modeling ; Data acquisition ; Data models ; Linear discriminant analysis ; Pediatrics ; Support vector machines</subject><ispartof>2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,777,781,786,787,27906</link.rule.ids></links><search><creatorcontrib>Biala, Taher A</creatorcontrib><creatorcontrib>Ramahi, Ahmad</creatorcontrib><creatorcontrib>Ekenedirichukwu, Obianom</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Schlindwein, Fernando S</creatorcontrib><title>Use of AI to Assess Control and Diseased Children at 10 Years of Age</title><title>2023 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). These algorithms were applied to the task of classifying the two target groups while discerning the pivotal parameters contributing to their classification. The obtained results yielded classification accuracy scores of 92.89%, 89.89%, and 87.67% for QDA, LDA, and SVM, respectively. Notably, the analysis revealed that parameters related to birth weight held the most substantial influence in distinguishing between the two cohorts. In light of our conclusive findings, we recommend the utilization of Quadratic Discriminant Analysis (QDA) as a valuable tool for clinicians seeking to identify children at risk of IUGR disease. This research contributes to the enhancement of diagnostic methodologies in pediatric medicine, fostering more accurate and timely interventions for affected individuals.</description><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>Linear discriminant analysis</subject><subject>Pediatrics</subject><subject>Support vector machines</subject><issn>2325-887X</issn><isbn>9798350382525</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQA0SElXJysTgH0i4vn6PVcqjUiUWKsFUOfYNGIUExVn4exD0LGc6h7FrAQ2icv62zWPbIKBsFIozVnnrndQgHWrU52yFEnXtnH25ZFUpH_CLts4bt2LbQyE-9Xyz48vEN6VQKbydxmWeBh7GxLe5UCiUePuehzTTyMPCBfBXCnP5K9_oil30YShUnbxmh_u75_ax3j897NrNvs5C-KU2RoLF2IHCpK0kAN_ZIGSMgEYbkFFZYx1Rp5Q3iUyPkUg7ENElRUmu2c3_NxPR8WvOn2H-PgqQRgm08gcUpkim</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Biala, Taher A</creator><creator>Ramahi, Ahmad</creator><creator>Ekenedirichukwu, Obianom</creator><creator>Li, Xin</creator><creator>Schlindwein, Fernando S</creator><general>CinC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20231001</creationdate><title>Use of AI to Assess Control and Diseased Children at 10 Years of Age</title><author>Biala, Taher A ; Ramahi, Ahmad ; Ekenedirichukwu, Obianom ; Li, Xin ; Schlindwein, Fernando S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-663072cb042d573e009b7a13cc0265603c47678eeb4496de6f2cee5801c8d4ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>Linear discriminant analysis</topic><topic>Pediatrics</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Biala, Taher A</creatorcontrib><creatorcontrib>Ramahi, Ahmad</creatorcontrib><creatorcontrib>Ekenedirichukwu, Obianom</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Schlindwein, Fernando S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biala, Taher A</au><au>Ramahi, Ahmad</au><au>Ekenedirichukwu, Obianom</au><au>Li, Xin</au><au>Schlindwein, Fernando S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Use of AI to Assess Control and Diseased Children at 10 Years of Age</atitle><btitle>2023 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>50</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350382525</eisbn><abstract>This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). These algorithms were applied to the task of classifying the two target groups while discerning the pivotal parameters contributing to their classification. The obtained results yielded classification accuracy scores of 92.89%, 89.89%, and 87.67% for QDA, LDA, and SVM, respectively. Notably, the analysis revealed that parameters related to birth weight held the most substantial influence in distinguishing between the two cohorts. In light of our conclusive findings, we recommend the utilization of Quadratic Discriminant Analysis (QDA) as a valuable tool for clinicians seeking to identify children at risk of IUGR disease. This research contributes to the enhancement of diagnostic methodologies in pediatric medicine, fostering more accurate and timely interventions for affected individuals.</abstract><pub>CinC</pub><doi>10.22489/CinC.2023.421</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2325-887X
ispartof 2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4
issn 2325-887X
language eng
recordid cdi_ieee_primary_10364127
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Classification algorithms
Computational modeling
Data acquisition
Data models
Linear discriminant analysis
Pediatrics
Support vector machines
title Use of AI to Assess Control and Diseased Children at 10 Years of Age
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Use%20of%20AI%20to%20Assess%20Control%20and%20Diseased%20Children%20at%2010%20Years%20of%20Age&rft.btitle=2023%20Computing%20in%20Cardiology%20(CinC)&rft.au=Biala,%20Taher%20A&rft.date=2023-10-01&rft.volume=50&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2023.421&rft_dat=%3Cieee%3E10364127%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350382525&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10364127&rfr_iscdi=true