Use of AI to Assess Control and Diseased Children at 10 Years of Age
This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analy...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 50 |
creator | Biala, Taher A Ramahi, Ahmad Ekenedirichukwu, Obianom Li, Xin Schlindwein, Fernando S |
description | This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). These algorithms were applied to the task of classifying the two target groups while discerning the pivotal parameters contributing to their classification. The obtained results yielded classification accuracy scores of 92.89%, 89.89%, and 87.67% for QDA, LDA, and SVM, respectively. Notably, the analysis revealed that parameters related to birth weight held the most substantial influence in distinguishing between the two cohorts. In light of our conclusive findings, we recommend the utilization of Quadratic Discriminant Analysis (QDA) as a valuable tool for clinicians seeking to identify children at risk of IUGR disease. This research contributes to the enhancement of diagnostic methodologies in pediatric medicine, fostering more accurate and timely interventions for affected individuals. |
doi_str_mv | 10.22489/CinC.2023.421 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10364127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10364127</ieee_id><sourcerecordid>10364127</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-663072cb042d573e009b7a13cc0265603c47678eeb4496de6f2cee5801c8d4ed3</originalsourceid><addsrcrecordid>eNotjLtOwzAUQA0SElXJysTgH0i4vn6PVcqjUiUWKsFUOfYNGIUExVn4exD0LGc6h7FrAQ2icv62zWPbIKBsFIozVnnrndQgHWrU52yFEnXtnH25ZFUpH_CLts4bt2LbQyE-9Xyz48vEN6VQKbydxmWeBh7GxLe5UCiUePuehzTTyMPCBfBXCnP5K9_oil30YShUnbxmh_u75_ax3j897NrNvs5C-KU2RoLF2IHCpK0kAN_ZIGSMgEYbkFFZYx1Rp5Q3iUyPkUg7ENElRUmu2c3_NxPR8WvOn2H-PgqQRgm08gcUpkim</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Use of AI to Assess Control and Diseased Children at 10 Years of Age</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Biala, Taher A ; Ramahi, Ahmad ; Ekenedirichukwu, Obianom ; Li, Xin ; Schlindwein, Fernando S</creator><creatorcontrib>Biala, Taher A ; Ramahi, Ahmad ; Ekenedirichukwu, Obianom ; Li, Xin ; Schlindwein, Fernando S</creatorcontrib><description>This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). These algorithms were applied to the task of classifying the two target groups while discerning the pivotal parameters contributing to their classification. The obtained results yielded classification accuracy scores of 92.89%, 89.89%, and 87.67% for QDA, LDA, and SVM, respectively. Notably, the analysis revealed that parameters related to birth weight held the most substantial influence in distinguishing between the two cohorts. In light of our conclusive findings, we recommend the utilization of Quadratic Discriminant Analysis (QDA) as a valuable tool for clinicians seeking to identify children at risk of IUGR disease. This research contributes to the enhancement of diagnostic methodologies in pediatric medicine, fostering more accurate and timely interventions for affected individuals.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350382525</identifier><identifier>DOI: 10.22489/CinC.2023.421</identifier><language>eng</language><publisher>CinC</publisher><subject>Classification algorithms ; Computational modeling ; Data acquisition ; Data models ; Linear discriminant analysis ; Pediatrics ; Support vector machines</subject><ispartof>2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,777,781,786,787,27906</link.rule.ids></links><search><creatorcontrib>Biala, Taher A</creatorcontrib><creatorcontrib>Ramahi, Ahmad</creatorcontrib><creatorcontrib>Ekenedirichukwu, Obianom</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Schlindwein, Fernando S</creatorcontrib><title>Use of AI to Assess Control and Diseased Children at 10 Years of Age</title><title>2023 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). These algorithms were applied to the task of classifying the two target groups while discerning the pivotal parameters contributing to their classification. The obtained results yielded classification accuracy scores of 92.89%, 89.89%, and 87.67% for QDA, LDA, and SVM, respectively. Notably, the analysis revealed that parameters related to birth weight held the most substantial influence in distinguishing between the two cohorts. In light of our conclusive findings, we recommend the utilization of Quadratic Discriminant Analysis (QDA) as a valuable tool for clinicians seeking to identify children at risk of IUGR disease. This research contributes to the enhancement of diagnostic methodologies in pediatric medicine, fostering more accurate and timely interventions for affected individuals.</description><subject>Classification algorithms</subject><subject>Computational modeling</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>Linear discriminant analysis</subject><subject>Pediatrics</subject><subject>Support vector machines</subject><issn>2325-887X</issn><isbn>9798350382525</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjLtOwzAUQA0SElXJysTgH0i4vn6PVcqjUiUWKsFUOfYNGIUExVn4exD0LGc6h7FrAQ2icv62zWPbIKBsFIozVnnrndQgHWrU52yFEnXtnH25ZFUpH_CLts4bt2LbQyE-9Xyz48vEN6VQKbydxmWeBh7GxLe5UCiUePuehzTTyMPCBfBXCnP5K9_oil30YShUnbxmh_u75_ax3j897NrNvs5C-KU2RoLF2IHCpK0kAN_ZIGSMgEYbkFFZYx1Rp5Q3iUyPkUg7ENElRUmu2c3_NxPR8WvOn2H-PgqQRgm08gcUpkim</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Biala, Taher A</creator><creator>Ramahi, Ahmad</creator><creator>Ekenedirichukwu, Obianom</creator><creator>Li, Xin</creator><creator>Schlindwein, Fernando S</creator><general>CinC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20231001</creationdate><title>Use of AI to Assess Control and Diseased Children at 10 Years of Age</title><author>Biala, Taher A ; Ramahi, Ahmad ; Ekenedirichukwu, Obianom ; Li, Xin ; Schlindwein, Fernando S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-663072cb042d573e009b7a13cc0265603c47678eeb4496de6f2cee5801c8d4ed3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification algorithms</topic><topic>Computational modeling</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>Linear discriminant analysis</topic><topic>Pediatrics</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Biala, Taher A</creatorcontrib><creatorcontrib>Ramahi, Ahmad</creatorcontrib><creatorcontrib>Ekenedirichukwu, Obianom</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Schlindwein, Fernando S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biala, Taher A</au><au>Ramahi, Ahmad</au><au>Ekenedirichukwu, Obianom</au><au>Li, Xin</au><au>Schlindwein, Fernando S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Use of AI to Assess Control and Diseased Children at 10 Years of Age</atitle><btitle>2023 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>50</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350382525</eisbn><abstract>This research endeavors to leverage advanced AI algorithms for the differentiation between typically developing children and those afflicted with Intrauterine Growth Restriction (IUGR) disease. We deployed three distinct AI algorithms: Quadratic Discriminant Analysis (QDA), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). These algorithms were applied to the task of classifying the two target groups while discerning the pivotal parameters contributing to their classification. The obtained results yielded classification accuracy scores of 92.89%, 89.89%, and 87.67% for QDA, LDA, and SVM, respectively. Notably, the analysis revealed that parameters related to birth weight held the most substantial influence in distinguishing between the two cohorts. In light of our conclusive findings, we recommend the utilization of Quadratic Discriminant Analysis (QDA) as a valuable tool for clinicians seeking to identify children at risk of IUGR disease. This research contributes to the enhancement of diagnostic methodologies in pediatric medicine, fostering more accurate and timely interventions for affected individuals.</abstract><pub>CinC</pub><doi>10.22489/CinC.2023.421</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2325-887X |
ispartof | 2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4 |
issn | 2325-887X |
language | eng |
recordid | cdi_ieee_primary_10364127 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Classification algorithms Computational modeling Data acquisition Data models Linear discriminant analysis Pediatrics Support vector machines |
title | Use of AI to Assess Control and Diseased Children at 10 Years of Age |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Use%20of%20AI%20to%20Assess%20Control%20and%20Diseased%20Children%20at%2010%20Years%20of%20Age&rft.btitle=2023%20Computing%20in%20Cardiology%20(CinC)&rft.au=Biala,%20Taher%20A&rft.date=2023-10-01&rft.volume=50&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2023.421&rft_dat=%3Cieee%3E10364127%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350382525&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10364127&rfr_iscdi=true |