Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model

Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Steyer, Joshua, Chegini, Fatemeh, Potse, Mark, Loewe, Axel, Weiser, Martin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume 50
creator Steyer, Joshua
Chegini, Fatemeh
Potse, Mark
Loewe, Axel
Weiser, Martin
description Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CVand how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular- membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the micro- scopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell.
doi_str_mv 10.22489/CinC.2023.385
format Conference Proceeding
fullrecord <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10364097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10364097</ieee_id><sourcerecordid>10364097</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-86f1c83c2ee6784916ca138ad079f045f97c66e2fc3c31237806012486833d913</originalsourceid><addsrcrecordid>eNotj81KxDAYRaMgOIzdunKRF8iY5GuSL0sJ_sEMgii4G2KaQKTTlP4s-vZ20Ls53LO4cAm5FXwnZY323uXO7SSXsANUF6SyxiIoDiiVVJdkI0Eqhmi-rkk1jj98jTJoNW7IuyvdlLs5TwstiR5yGMoYSp8DdX5osl9ZumYOUy4dzR31az_18-TPwrfUxbZl3ws7kx5KE9sbcpV8O8bqn1vy-fT44V7Y_u351T3sWRbCTgx1EgEhyBi1wdoKHbwA9A03NvFaJWuC1lGmAAGEBINcc7H-1QjQWAFbcve3m2OMx37IJz8sR8FB19wa-AV8Kk8P</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Steyer, Joshua ; Chegini, Fatemeh ; Potse, Mark ; Loewe, Axel ; Weiser, Martin</creator><creatorcontrib>Steyer, Joshua ; Chegini, Fatemeh ; Potse, Mark ; Loewe, Axel ; Weiser, Martin</creatorcontrib><description>Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CVand how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular- membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the micro- scopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350382525</identifier><identifier>DOI: 10.22489/CinC.2023.385</identifier><language>eng</language><publisher>CinC</publisher><subject>Arrhythmia ; Cardiac tissue ; Computational modeling ; Fractionation ; Junctions ; Microscopy</subject><ispartof>2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,27902</link.rule.ids></links><search><creatorcontrib>Steyer, Joshua</creatorcontrib><creatorcontrib>Chegini, Fatemeh</creatorcontrib><creatorcontrib>Potse, Mark</creatorcontrib><creatorcontrib>Loewe, Axel</creatorcontrib><creatorcontrib>Weiser, Martin</creatorcontrib><title>Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model</title><title>2023 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CVand how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular- membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the micro- scopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell.</description><subject>Arrhythmia</subject><subject>Cardiac tissue</subject><subject>Computational modeling</subject><subject>Fractionation</subject><subject>Junctions</subject><subject>Microscopy</subject><issn>2325-887X</issn><isbn>9798350382525</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAYRaMgOIzdunKRF8iY5GuSL0sJ_sEMgii4G2KaQKTTlP4s-vZ20Ls53LO4cAm5FXwnZY323uXO7SSXsANUF6SyxiIoDiiVVJdkI0Eqhmi-rkk1jj98jTJoNW7IuyvdlLs5TwstiR5yGMoYSp8DdX5osl9ZumYOUy4dzR31az_18-TPwrfUxbZl3ws7kx5KE9sbcpV8O8bqn1vy-fT44V7Y_u351T3sWRbCTgx1EgEhyBi1wdoKHbwA9A03NvFaJWuC1lGmAAGEBINcc7H-1QjQWAFbcve3m2OMx37IJz8sR8FB19wa-AV8Kk8P</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Steyer, Joshua</creator><creator>Chegini, Fatemeh</creator><creator>Potse, Mark</creator><creator>Loewe, Axel</creator><creator>Weiser, Martin</creator><general>CinC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20231001</creationdate><title>Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model</title><author>Steyer, Joshua ; Chegini, Fatemeh ; Potse, Mark ; Loewe, Axel ; Weiser, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-86f1c83c2ee6784916ca138ad079f045f97c66e2fc3c31237806012486833d913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrhythmia</topic><topic>Cardiac tissue</topic><topic>Computational modeling</topic><topic>Fractionation</topic><topic>Junctions</topic><topic>Microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Steyer, Joshua</creatorcontrib><creatorcontrib>Chegini, Fatemeh</creatorcontrib><creatorcontrib>Potse, Mark</creatorcontrib><creatorcontrib>Loewe, Axel</creatorcontrib><creatorcontrib>Weiser, Martin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steyer, Joshua</au><au>Chegini, Fatemeh</au><au>Potse, Mark</au><au>Loewe, Axel</au><au>Weiser, Martin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model</atitle><btitle>2023 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>50</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350382525</eisbn><abstract>Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CVand how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular- membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the micro- scopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell.</abstract><pub>CinC</pub><doi>10.22489/CinC.2023.385</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2325-887X
ispartof 2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4
issn 2325-887X
language eng
recordid cdi_ieee_primary_10364097
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arrhythmia
Cardiac tissue
Computational modeling
Fractionation
Junctions
Microscopy
title Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Continuity%20of%20Microscopic%20Cardiac%20Conduction%20in%20a%20Computational%20Cell-by-Cell%20Model&rft.btitle=2023%20Computing%20in%20Cardiology%20(CinC)&rft.au=Steyer,%20Joshua&rft.date=2023-10-01&rft.volume=50&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2023.385&rft_dat=%3Cieee%3E10364097%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350382525&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10364097&rfr_iscdi=true