Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model
Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on C...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 50 |
creator | Steyer, Joshua Chegini, Fatemeh Potse, Mark Loewe, Axel Weiser, Martin |
description | Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CVand how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular- membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the micro- scopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell. |
doi_str_mv | 10.22489/CinC.2023.385 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_10364097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10364097</ieee_id><sourcerecordid>10364097</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-86f1c83c2ee6784916ca138ad079f045f97c66e2fc3c31237806012486833d913</originalsourceid><addsrcrecordid>eNotj81KxDAYRaMgOIzdunKRF8iY5GuSL0sJ_sEMgii4G2KaQKTTlP4s-vZ20Ls53LO4cAm5FXwnZY323uXO7SSXsANUF6SyxiIoDiiVVJdkI0Eqhmi-rkk1jj98jTJoNW7IuyvdlLs5TwstiR5yGMoYSp8DdX5osl9ZumYOUy4dzR31az_18-TPwrfUxbZl3ws7kx5KE9sbcpV8O8bqn1vy-fT44V7Y_u351T3sWRbCTgx1EgEhyBi1wdoKHbwA9A03NvFaJWuC1lGmAAGEBINcc7H-1QjQWAFbcve3m2OMx37IJz8sR8FB19wa-AV8Kk8P</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Steyer, Joshua ; Chegini, Fatemeh ; Potse, Mark ; Loewe, Axel ; Weiser, Martin</creator><creatorcontrib>Steyer, Joshua ; Chegini, Fatemeh ; Potse, Mark ; Loewe, Axel ; Weiser, Martin</creatorcontrib><description>Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CVand how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular- membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the micro- scopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350382525</identifier><identifier>DOI: 10.22489/CinC.2023.385</identifier><language>eng</language><publisher>CinC</publisher><subject>Arrhythmia ; Cardiac tissue ; Computational modeling ; Fractionation ; Junctions ; Microscopy</subject><ispartof>2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,27902</link.rule.ids></links><search><creatorcontrib>Steyer, Joshua</creatorcontrib><creatorcontrib>Chegini, Fatemeh</creatorcontrib><creatorcontrib>Potse, Mark</creatorcontrib><creatorcontrib>Loewe, Axel</creatorcontrib><creatorcontrib>Weiser, Martin</creatorcontrib><title>Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model</title><title>2023 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CVand how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular- membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the micro- scopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell.</description><subject>Arrhythmia</subject><subject>Cardiac tissue</subject><subject>Computational modeling</subject><subject>Fractionation</subject><subject>Junctions</subject><subject>Microscopy</subject><issn>2325-887X</issn><isbn>9798350382525</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAYRaMgOIzdunKRF8iY5GuSL0sJ_sEMgii4G2KaQKTTlP4s-vZ20Ls53LO4cAm5FXwnZY323uXO7SSXsANUF6SyxiIoDiiVVJdkI0Eqhmi-rkk1jj98jTJoNW7IuyvdlLs5TwstiR5yGMoYSp8DdX5osl9ZumYOUy4dzR31az_18-TPwrfUxbZl3ws7kx5KE9sbcpV8O8bqn1vy-fT44V7Y_u351T3sWRbCTgx1EgEhyBi1wdoKHbwA9A03NvFaJWuC1lGmAAGEBINcc7H-1QjQWAFbcve3m2OMx37IJz8sR8FB19wa-AV8Kk8P</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Steyer, Joshua</creator><creator>Chegini, Fatemeh</creator><creator>Potse, Mark</creator><creator>Loewe, Axel</creator><creator>Weiser, Martin</creator><general>CinC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20231001</creationdate><title>Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model</title><author>Steyer, Joshua ; Chegini, Fatemeh ; Potse, Mark ; Loewe, Axel ; Weiser, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-86f1c83c2ee6784916ca138ad079f045f97c66e2fc3c31237806012486833d913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrhythmia</topic><topic>Cardiac tissue</topic><topic>Computational modeling</topic><topic>Fractionation</topic><topic>Junctions</topic><topic>Microscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Steyer, Joshua</creatorcontrib><creatorcontrib>Chegini, Fatemeh</creatorcontrib><creatorcontrib>Potse, Mark</creatorcontrib><creatorcontrib>Loewe, Axel</creatorcontrib><creatorcontrib>Weiser, Martin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steyer, Joshua</au><au>Chegini, Fatemeh</au><au>Potse, Mark</au><au>Loewe, Axel</au><au>Weiser, Martin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model</atitle><btitle>2023 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>50</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350382525</eisbn><abstract>Conduction velocity in cardiac tissue is a crucial electrophysiological parameter for arrhythmia vulnerability. Pathologically reduced conduction velocity facilitates arrhythmogenesis because such conduction velocities decrease the wavelength with which re-entry may occur. Computational studies on CVand how it changes regionally in models at spatial scales multiple times larger than actual cardiac cells exist. However, microscopic conduction within cells and between them have been studied less in simulations. In this work, we study the relation of microscopic conduction patterns and clinically observable macroscopic conduction using an extracellular- membrane-intracellular model which represents cardiac tissue with these subdomains at subcellular resolution. By considering cell arrangement and non-uniform gap junction distribution, it yields anisotropic excitation propagation. This novel kind of model can for example be used to understand how discontinuous conduction on the micro- scopic level affects fractionation of electrograms in healthy and fibrotic tissue. Along the membrane of a cell, we observed a continuously propagating activation wavefront. When transitioning from one cell to the neighbouring one, jumps in local activation times occurred, which led to lower global conduction velocities than locally within each cell.</abstract><pub>CinC</pub><doi>10.22489/CinC.2023.385</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2325-887X |
ispartof | 2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4 |
issn | 2325-887X |
language | eng |
recordid | cdi_ieee_primary_10364097 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Arrhythmia Cardiac tissue Computational modeling Fractionation Junctions Microscopy |
title | Continuity of Microscopic Cardiac Conduction in a Computational Cell-by-Cell Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Continuity%20of%20Microscopic%20Cardiac%20Conduction%20in%20a%20Computational%20Cell-by-Cell%20Model&rft.btitle=2023%20Computing%20in%20Cardiology%20(CinC)&rft.au=Steyer,%20Joshua&rft.date=2023-10-01&rft.volume=50&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2023.385&rft_dat=%3Cieee%3E10364097%3C/ieee%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350382525&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10364097&rfr_iscdi=true |