Macro-level similarity measurement in VizIR

This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Eidenberger, H., Breiteneder, C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724 vol.1
container_issue
container_start_page 721
container_title
container_volume 1
creator Eidenberger, H.
Breiteneder, C.
description This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is an open CBIR framework for researchers, software developers and instructors. Past efforts in CBIR have lead to several general-purpose prototypes. However, these prototypes differ in implemented feature classes, user-interfaces and similarity measurement. VizIR aims at overcoming this unsatisfactory situation. The paper overviews wide-spread techniques for similarity measurement in CBIR, derives a general querying model and proposes conditions for similarity measurement algorithms on the macro-level. Based on these conditions two methods (the linear weighted merging method and the query model approach) are evaluated and the superior method chosen for the VizIR project. Additionally, the major goals of the VizIR project are outlined and interested researchers are invited to participate in the project.
doi_str_mv 10.1109/ICME.2002.1035883
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1035883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1035883</ieee_id><sourcerecordid>1035883</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4c86b83a64a4a27d52dda34d7c4bd31a0ae83a700d4d38884d573efd169f14be3</originalsourceid><addsrcrecordid>eNotj0FLw0AQhRdEUGp-gHjJXRJnM7PZzVFC1UCLIK3XMslOYCWpko1C_fUG7OPBd3jwwVPqVkOuNVQPTb1d5wVAkWtA4xxeqKSyDpaiRSC6UkmMH7AEK2McXKv7LXfTZzbIjwxpDGMYeArzKR2F4_ckoxznNBzT9_DbvN2oy56HKMmZK7V_Wu_ql2zz-tzUj5ssaGvmjDpXtg65JCYurDeF94zkbUetR83AsqwWwJNH5xx5Y1F6r8uq19QKrtTdvzeIyOFrCiNPp8P5Ev4B169Asw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Macro-level similarity measurement in VizIR</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Eidenberger, H. ; Breiteneder, C.</creator><creatorcontrib>Eidenberger, H. ; Breiteneder, C.</creatorcontrib><description>This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is an open CBIR framework for researchers, software developers and instructors. Past efforts in CBIR have lead to several general-purpose prototypes. However, these prototypes differ in implemented feature classes, user-interfaces and similarity measurement. VizIR aims at overcoming this unsatisfactory situation. The paper overviews wide-spread techniques for similarity measurement in CBIR, derives a general querying model and proposes conditions for similarity measurement algorithms on the macro-level. Based on these conditions two methods (the linear weighted merging method and the query model approach) are evaluated and the superior method chosen for the VizIR project. Additionally, the major goals of the VizIR project are outlined and interested researchers are invited to participate in the project.</description><identifier>ISBN: 9780780373044</identifier><identifier>ISBN: 0780373049</identifier><identifier>DOI: 10.1109/ICME.2002.1035883</identifier><language>eng</language><publisher>IEEE</publisher><subject>Content based retrieval ; Engines ; Humans ; Image analysis ; Image retrieval ; Information retrieval ; Interactive systems ; Merging ; Prototypes ; Software prototyping</subject><ispartof>Proceedings. IEEE International Conference on Multimedia and Expo, 2002, Vol.1, p.721-724 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1035883$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1035883$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eidenberger, H.</creatorcontrib><creatorcontrib>Breiteneder, C.</creatorcontrib><title>Macro-level similarity measurement in VizIR</title><title>Proceedings. IEEE International Conference on Multimedia and Expo</title><addtitle>ICME</addtitle><description>This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is an open CBIR framework for researchers, software developers and instructors. Past efforts in CBIR have lead to several general-purpose prototypes. However, these prototypes differ in implemented feature classes, user-interfaces and similarity measurement. VizIR aims at overcoming this unsatisfactory situation. The paper overviews wide-spread techniques for similarity measurement in CBIR, derives a general querying model and proposes conditions for similarity measurement algorithms on the macro-level. Based on these conditions two methods (the linear weighted merging method and the query model approach) are evaluated and the superior method chosen for the VizIR project. Additionally, the major goals of the VizIR project are outlined and interested researchers are invited to participate in the project.</description><subject>Content based retrieval</subject><subject>Engines</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Interactive systems</subject><subject>Merging</subject><subject>Prototypes</subject><subject>Software prototyping</subject><isbn>9780780373044</isbn><isbn>0780373049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLw0AQhRdEUGp-gHjJXRJnM7PZzVFC1UCLIK3XMslOYCWpko1C_fUG7OPBd3jwwVPqVkOuNVQPTb1d5wVAkWtA4xxeqKSyDpaiRSC6UkmMH7AEK2McXKv7LXfTZzbIjwxpDGMYeArzKR2F4_ckoxznNBzT9_DbvN2oy56HKMmZK7V_Wu_ql2zz-tzUj5ssaGvmjDpXtg65JCYurDeF94zkbUetR83AsqwWwJNH5xx5Y1F6r8uq19QKrtTdvzeIyOFrCiNPp8P5Ev4B169Asw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Eidenberger, H.</creator><creator>Breiteneder, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Macro-level similarity measurement in VizIR</title><author>Eidenberger, H. ; Breiteneder, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4c86b83a64a4a27d52dda34d7c4bd31a0ae83a700d4d38884d573efd169f14be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Content based retrieval</topic><topic>Engines</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Interactive systems</topic><topic>Merging</topic><topic>Prototypes</topic><topic>Software prototyping</topic><toplevel>online_resources</toplevel><creatorcontrib>Eidenberger, H.</creatorcontrib><creatorcontrib>Breiteneder, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eidenberger, H.</au><au>Breiteneder, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Macro-level similarity measurement in VizIR</atitle><btitle>Proceedings. IEEE International Conference on Multimedia and Expo</btitle><stitle>ICME</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>721</spage><epage>724 vol.1</epage><pages>721-724 vol.1</pages><isbn>9780780373044</isbn><isbn>0780373049</isbn><abstract>This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is an open CBIR framework for researchers, software developers and instructors. Past efforts in CBIR have lead to several general-purpose prototypes. However, these prototypes differ in implemented feature classes, user-interfaces and similarity measurement. VizIR aims at overcoming this unsatisfactory situation. The paper overviews wide-spread techniques for similarity measurement in CBIR, derives a general querying model and proposes conditions for similarity measurement algorithms on the macro-level. Based on these conditions two methods (the linear weighted merging method and the query model approach) are evaluated and the superior method chosen for the VizIR project. Additionally, the major goals of the VizIR project are outlined and interested researchers are invited to participate in the project.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2002.1035883</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780373044
ispartof Proceedings. IEEE International Conference on Multimedia and Expo, 2002, Vol.1, p.721-724 vol.1
issn
language eng
recordid cdi_ieee_primary_1035883
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Content based retrieval
Engines
Humans
Image analysis
Image retrieval
Information retrieval
Interactive systems
Merging
Prototypes
Software prototyping
title Macro-level similarity measurement in VizIR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Macro-level%20similarity%20measurement%20in%20VizIR&rft.btitle=Proceedings.%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo&rft.au=Eidenberger,%20H.&rft.date=2002&rft.volume=1&rft.spage=721&rft.epage=724%20vol.1&rft.pages=721-724%20vol.1&rft.isbn=9780780373044&rft.isbn_list=0780373049&rft_id=info:doi/10.1109/ICME.2002.1035883&rft_dat=%3Cieee_6IE%3E1035883%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1035883&rfr_iscdi=true