Macro-level similarity measurement in VizIR
This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is a...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 724 vol.1 |
---|---|
container_issue | |
container_start_page | 721 |
container_title | |
container_volume | 1 |
creator | Eidenberger, H. Breiteneder, C. |
description | This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is an open CBIR framework for researchers, software developers and instructors. Past efforts in CBIR have lead to several general-purpose prototypes. However, these prototypes differ in implemented feature classes, user-interfaces and similarity measurement. VizIR aims at overcoming this unsatisfactory situation. The paper overviews wide-spread techniques for similarity measurement in CBIR, derives a general querying model and proposes conditions for similarity measurement algorithms on the macro-level. Based on these conditions two methods (the linear weighted merging method and the query model approach) are evaluated and the superior method chosen for the VizIR project. Additionally, the major goals of the VizIR project are outlined and interested researchers are invited to participate in the project. |
doi_str_mv | 10.1109/ICME.2002.1035883 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1035883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1035883</ieee_id><sourcerecordid>1035883</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4c86b83a64a4a27d52dda34d7c4bd31a0ae83a700d4d38884d573efd169f14be3</originalsourceid><addsrcrecordid>eNotj0FLw0AQhRdEUGp-gHjJXRJnM7PZzVFC1UCLIK3XMslOYCWpko1C_fUG7OPBd3jwwVPqVkOuNVQPTb1d5wVAkWtA4xxeqKSyDpaiRSC6UkmMH7AEK2McXKv7LXfTZzbIjwxpDGMYeArzKR2F4_ckoxznNBzT9_DbvN2oy56HKMmZK7V_Wu_ql2zz-tzUj5ssaGvmjDpXtg65JCYurDeF94zkbUetR83AsqwWwJNH5xx5Y1F6r8uq19QKrtTdvzeIyOFrCiNPp8P5Ev4B169Asw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Macro-level similarity measurement in VizIR</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Eidenberger, H. ; Breiteneder, C.</creator><creatorcontrib>Eidenberger, H. ; Breiteneder, C.</creatorcontrib><description>This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is an open CBIR framework for researchers, software developers and instructors. Past efforts in CBIR have lead to several general-purpose prototypes. However, these prototypes differ in implemented feature classes, user-interfaces and similarity measurement. VizIR aims at overcoming this unsatisfactory situation. The paper overviews wide-spread techniques for similarity measurement in CBIR, derives a general querying model and proposes conditions for similarity measurement algorithms on the macro-level. Based on these conditions two methods (the linear weighted merging method and the query model approach) are evaluated and the superior method chosen for the VizIR project. Additionally, the major goals of the VizIR project are outlined and interested researchers are invited to participate in the project.</description><identifier>ISBN: 9780780373044</identifier><identifier>ISBN: 0780373049</identifier><identifier>DOI: 10.1109/ICME.2002.1035883</identifier><language>eng</language><publisher>IEEE</publisher><subject>Content based retrieval ; Engines ; Humans ; Image analysis ; Image retrieval ; Information retrieval ; Interactive systems ; Merging ; Prototypes ; Software prototyping</subject><ispartof>Proceedings. IEEE International Conference on Multimedia and Expo, 2002, Vol.1, p.721-724 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1035883$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1035883$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Eidenberger, H.</creatorcontrib><creatorcontrib>Breiteneder, C.</creatorcontrib><title>Macro-level similarity measurement in VizIR</title><title>Proceedings. IEEE International Conference on Multimedia and Expo</title><addtitle>ICME</addtitle><description>This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is an open CBIR framework for researchers, software developers and instructors. Past efforts in CBIR have lead to several general-purpose prototypes. However, these prototypes differ in implemented feature classes, user-interfaces and similarity measurement. VizIR aims at overcoming this unsatisfactory situation. The paper overviews wide-spread techniques for similarity measurement in CBIR, derives a general querying model and proposes conditions for similarity measurement algorithms on the macro-level. Based on these conditions two methods (the linear weighted merging method and the query model approach) are evaluated and the superior method chosen for the VizIR project. Additionally, the major goals of the VizIR project are outlined and interested researchers are invited to participate in the project.</description><subject>Content based retrieval</subject><subject>Engines</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Interactive systems</subject><subject>Merging</subject><subject>Prototypes</subject><subject>Software prototyping</subject><isbn>9780780373044</isbn><isbn>0780373049</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLw0AQhRdEUGp-gHjJXRJnM7PZzVFC1UCLIK3XMslOYCWpko1C_fUG7OPBd3jwwVPqVkOuNVQPTb1d5wVAkWtA4xxeqKSyDpaiRSC6UkmMH7AEK2McXKv7LXfTZzbIjwxpDGMYeArzKR2F4_ckoxznNBzT9_DbvN2oy56HKMmZK7V_Wu_ql2zz-tzUj5ssaGvmjDpXtg65JCYurDeF94zkbUetR83AsqwWwJNH5xx5Y1F6r8uq19QKrtTdvzeIyOFrCiNPp8P5Ev4B169Asw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Eidenberger, H.</creator><creator>Breiteneder, C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Macro-level similarity measurement in VizIR</title><author>Eidenberger, H. ; Breiteneder, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4c86b83a64a4a27d52dda34d7c4bd31a0ae83a700d4d38884d573efd169f14be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Content based retrieval</topic><topic>Engines</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Interactive systems</topic><topic>Merging</topic><topic>Prototypes</topic><topic>Software prototyping</topic><toplevel>online_resources</toplevel><creatorcontrib>Eidenberger, H.</creatorcontrib><creatorcontrib>Breiteneder, C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eidenberger, H.</au><au>Breiteneder, C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Macro-level similarity measurement in VizIR</atitle><btitle>Proceedings. IEEE International Conference on Multimedia and Expo</btitle><stitle>ICME</stitle><date>2002</date><risdate>2002</risdate><volume>1</volume><spage>721</spage><epage>724 vol.1</epage><pages>721-724 vol.1</pages><isbn>9780780373044</isbn><isbn>0780373049</isbn><abstract>This paper analyzes the similarity measurement in content-based image and video retrieval systems (CBIR). The goal is to identify preliminaries for successful queries as the basis for the implementation of a query engine in the content-based visual information retrieval framework (VizIR). VizIR is an open CBIR framework for researchers, software developers and instructors. Past efforts in CBIR have lead to several general-purpose prototypes. However, these prototypes differ in implemented feature classes, user-interfaces and similarity measurement. VizIR aims at overcoming this unsatisfactory situation. The paper overviews wide-spread techniques for similarity measurement in CBIR, derives a general querying model and proposes conditions for similarity measurement algorithms on the macro-level. Based on these conditions two methods (the linear weighted merging method and the query model approach) are evaluated and the superior method chosen for the VizIR project. Additionally, the major goals of the VizIR project are outlined and interested researchers are invited to participate in the project.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2002.1035883</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780373044 |
ispartof | Proceedings. IEEE International Conference on Multimedia and Expo, 2002, Vol.1, p.721-724 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1035883 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Content based retrieval Engines Humans Image analysis Image retrieval Information retrieval Interactive systems Merging Prototypes Software prototyping |
title | Macro-level similarity measurement in VizIR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Macro-level%20similarity%20measurement%20in%20VizIR&rft.btitle=Proceedings.%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo&rft.au=Eidenberger,%20H.&rft.date=2002&rft.volume=1&rft.spage=721&rft.epage=724%20vol.1&rft.pages=721-724%20vol.1&rft.isbn=9780780373044&rft.isbn_list=0780373049&rft_id=info:doi/10.1109/ICME.2002.1035883&rft_dat=%3Cieee_6IE%3E1035883%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1035883&rfr_iscdi=true |