Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization
In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article propo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2024-08, Vol.54 (8), p.4763-4774 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4774 |
---|---|
container_issue | 8 |
container_start_page | 4763 |
container_title | IEEE transactions on cybernetics |
container_volume | 54 |
creator | Peng, Hu Kong, Fanrong Zhang, Qingfu |
description | In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article proposes a micro MOEA with piecewise strategy (\mu MOEA) for industrial optimization in embedded processor. \mu MOEA introduces an improved piecewise strategy based on the MOEA/D framework, which serially optimizes subclusters to be compatible with embedded processor under limited computing power. For the purpose of further enhancing \mu MOEA, a dynamic and flexible weight vector update trigger mechanism is proposed, so that the algorithm can save and utilize the computing resources of the embedded processor as much as possible. Abundant artificial test problems are carrying out to test the performance of \mu MOEA. Through various experiments, it can be found that \mu MOEA has outstanding performance in ZDT, DTLZ, SMOP, and MaF problems. Last and most importantly, \mu MOEA is successfully applied to two specific application scenarios of industrial optimization on embedded processor for simulation, such as two different types of semi-autogenous grinding optimization problems and micro-grid energy optimization problem, which prove the feasibility of applying MOEA to embedded processor. |
doi_str_mv | 10.1109/TCYB.2023.3336369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10354511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10354511</ieee_id><sourcerecordid>2902973658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-34968e0d0c88bee87950c03dbd635adca9772bf4324120bd56a313a9f94965143</originalsourceid><addsrcrecordid>eNpNkEtPGzEUha2qqCDID0CqKi-7meDHzNhehii0SCCQACFWI499hzqaiVPbw6O_vo4SIu7i3qujc87iQ-iUkimlRJ3dz5_Op4wwPuWc17xWX9ARo7UsGBPV1_1fi0M0iXFJ8sgsKfkNHXJJFJFCHKG3a2eCx9djn5xvl2CSewG8ePH9mIWVDu941j_74NKfAT_mjW8dGHh1EfBdCjrB8zvufMCLoQVrwRa3wRuI0YfiXEew-HJlx5iC0z2-WSc3uH9603yCDjrdR5js7jF6uFjcz38XVze_Luezq8IwUaaCl6qWQCwxUrYAUqiKGMJta2teaWu0EoK1XclZSRlpbVVrTrlWncrBipb8GP3c9q6D_ztCTM3gooG-1yvwY2yYIkwJXlcyW-nWmonEGKBr1sENGUFDSbNh3myYNxvmzY55zvzY1Y_tAHaf-CCcDd-3BgcAnwp5VVaU8v_tTodh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902973658</pqid></control><display><type>article</type><title>Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Hu ; Kong, Fanrong ; Zhang, Qingfu</creator><creatorcontrib>Peng, Hu ; Kong, Fanrong ; Zhang, Qingfu</creatorcontrib><description><![CDATA[In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article proposes a micro MOEA with piecewise strategy <inline-formula> <tex-math notation="LaTeX">(\mu </tex-math></inline-formula>MOEA) for industrial optimization in embedded processor. <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA introduces an improved piecewise strategy based on the MOEA/D framework, which serially optimizes subclusters to be compatible with embedded processor under limited computing power. For the purpose of further enhancing <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA, a dynamic and flexible weight vector update trigger mechanism is proposed, so that the algorithm can save and utilize the computing resources of the embedded processor as much as possible. Abundant artificial test problems are carrying out to test the performance of <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA. Through various experiments, it can be found that <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA has outstanding performance in ZDT, DTLZ, SMOP, and MaF problems. Last and most importantly, <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA is successfully applied to two specific application scenarios of industrial optimization on embedded processor for simulation, such as two different types of semi-autogenous grinding optimization problems and micro-grid energy optimization problem, which prove the feasibility of applying MOEA to embedded processor.]]></description><identifier>ISSN: 2168-2267</identifier><identifier>ISSN: 2168-2275</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2023.3336369</identifier><identifier>PMID: 38090877</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial intelligence ; Decomposition framework ; embedded-processor-based industrial optimization ; Evolutionary computation ; Memory management ; micro multiobjective evolutionary algorithm (MOEA) ; Optimization ; piecewise strategy ; Search problems ; Social factors ; Statistics</subject><ispartof>IEEE transactions on cybernetics, 2024-08, Vol.54 (8), p.4763-4774</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-34968e0d0c88bee87950c03dbd635adca9772bf4324120bd56a313a9f94965143</cites><orcidid>0000-0003-0786-0671 ; 0000-0003-3381-3246 ; 0000-0002-4040-6393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10354511$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10354511$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38090877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Hu</creatorcontrib><creatorcontrib>Kong, Fanrong</creatorcontrib><creatorcontrib>Zhang, Qingfu</creatorcontrib><title>Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description><![CDATA[In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article proposes a micro MOEA with piecewise strategy <inline-formula> <tex-math notation="LaTeX">(\mu </tex-math></inline-formula>MOEA) for industrial optimization in embedded processor. <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA introduces an improved piecewise strategy based on the MOEA/D framework, which serially optimizes subclusters to be compatible with embedded processor under limited computing power. For the purpose of further enhancing <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA, a dynamic and flexible weight vector update trigger mechanism is proposed, so that the algorithm can save and utilize the computing resources of the embedded processor as much as possible. Abundant artificial test problems are carrying out to test the performance of <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA. Through various experiments, it can be found that <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA has outstanding performance in ZDT, DTLZ, SMOP, and MaF problems. Last and most importantly, <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA is successfully applied to two specific application scenarios of industrial optimization on embedded processor for simulation, such as two different types of semi-autogenous grinding optimization problems and micro-grid energy optimization problem, which prove the feasibility of applying MOEA to embedded processor.]]></description><subject>Artificial intelligence</subject><subject>Decomposition framework</subject><subject>embedded-processor-based industrial optimization</subject><subject>Evolutionary computation</subject><subject>Memory management</subject><subject>micro multiobjective evolutionary algorithm (MOEA)</subject><subject>Optimization</subject><subject>piecewise strategy</subject><subject>Search problems</subject><subject>Social factors</subject><subject>Statistics</subject><issn>2168-2267</issn><issn>2168-2275</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPGzEUha2qqCDID0CqKi-7meDHzNhehii0SCCQACFWI499hzqaiVPbw6O_vo4SIu7i3qujc87iQ-iUkimlRJ3dz5_Op4wwPuWc17xWX9ARo7UsGBPV1_1fi0M0iXFJ8sgsKfkNHXJJFJFCHKG3a2eCx9djn5xvl2CSewG8ePH9mIWVDu941j_74NKfAT_mjW8dGHh1EfBdCjrB8zvufMCLoQVrwRa3wRuI0YfiXEew-HJlx5iC0z2-WSc3uH9603yCDjrdR5js7jF6uFjcz38XVze_Luezq8IwUaaCl6qWQCwxUrYAUqiKGMJta2teaWu0EoK1XclZSRlpbVVrTrlWncrBipb8GP3c9q6D_ztCTM3gooG-1yvwY2yYIkwJXlcyW-nWmonEGKBr1sENGUFDSbNh3myYNxvmzY55zvzY1Y_tAHaf-CCcDd-3BgcAnwp5VVaU8v_tTodh</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Peng, Hu</creator><creator>Kong, Fanrong</creator><creator>Zhang, Qingfu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0786-0671</orcidid><orcidid>https://orcid.org/0000-0003-3381-3246</orcidid><orcidid>https://orcid.org/0000-0002-4040-6393</orcidid></search><sort><creationdate>20240801</creationdate><title>Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization</title><author>Peng, Hu ; Kong, Fanrong ; Zhang, Qingfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-34968e0d0c88bee87950c03dbd635adca9772bf4324120bd56a313a9f94965143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Decomposition framework</topic><topic>embedded-processor-based industrial optimization</topic><topic>Evolutionary computation</topic><topic>Memory management</topic><topic>micro multiobjective evolutionary algorithm (MOEA)</topic><topic>Optimization</topic><topic>piecewise strategy</topic><topic>Search problems</topic><topic>Social factors</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Hu</creatorcontrib><creatorcontrib>Kong, Fanrong</creatorcontrib><creatorcontrib>Zhang, Qingfu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Hu</au><au>Kong, Fanrong</au><au>Zhang, Qingfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>54</volume><issue>8</issue><spage>4763</spage><epage>4774</epage><pages>4763-4774</pages><issn>2168-2267</issn><issn>2168-2275</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract><![CDATA[In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article proposes a micro MOEA with piecewise strategy <inline-formula> <tex-math notation="LaTeX">(\mu </tex-math></inline-formula>MOEA) for industrial optimization in embedded processor. <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA introduces an improved piecewise strategy based on the MOEA/D framework, which serially optimizes subclusters to be compatible with embedded processor under limited computing power. For the purpose of further enhancing <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA, a dynamic and flexible weight vector update trigger mechanism is proposed, so that the algorithm can save and utilize the computing resources of the embedded processor as much as possible. Abundant artificial test problems are carrying out to test the performance of <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA. Through various experiments, it can be found that <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA has outstanding performance in ZDT, DTLZ, SMOP, and MaF problems. Last and most importantly, <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA is successfully applied to two specific application scenarios of industrial optimization on embedded processor for simulation, such as two different types of semi-autogenous grinding optimization problems and micro-grid energy optimization problem, which prove the feasibility of applying MOEA to embedded processor.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>38090877</pmid><doi>10.1109/TCYB.2023.3336369</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0786-0671</orcidid><orcidid>https://orcid.org/0000-0003-3381-3246</orcidid><orcidid>https://orcid.org/0000-0002-4040-6393</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2024-08, Vol.54 (8), p.4763-4774 |
issn | 2168-2267 2168-2275 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_10354511 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial intelligence Decomposition framework embedded-processor-based industrial optimization Evolutionary computation Memory management micro multiobjective evolutionary algorithm (MOEA) Optimization piecewise strategy Search problems Social factors Statistics |
title | Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro%20Multiobjective%20Evolutionary%20Algorithm%20With%20Piecewise%20Strategy%20for%20Embedded-Processor-Based%20Industrial%20Optimization&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Peng,%20Hu&rft.date=2024-08-01&rft.volume=54&rft.issue=8&rft.spage=4763&rft.epage=4774&rft.pages=4763-4774&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2023.3336369&rft_dat=%3Cproquest_RIE%3E2902973658%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902973658&rft_id=info:pmid/38090877&rft_ieee_id=10354511&rfr_iscdi=true |