Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization

In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2024-08, Vol.54 (8), p.4763-4774
Hauptverfasser: Peng, Hu, Kong, Fanrong, Zhang, Qingfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4774
container_issue 8
container_start_page 4763
container_title IEEE transactions on cybernetics
container_volume 54
creator Peng, Hu
Kong, Fanrong
Zhang, Qingfu
description In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article proposes a micro MOEA with piecewise strategy (\mu MOEA) for industrial optimization in embedded processor. \mu MOEA introduces an improved piecewise strategy based on the MOEA/D framework, which serially optimizes subclusters to be compatible with embedded processor under limited computing power. For the purpose of further enhancing \mu MOEA, a dynamic and flexible weight vector update trigger mechanism is proposed, so that the algorithm can save and utilize the computing resources of the embedded processor as much as possible. Abundant artificial test problems are carrying out to test the performance of \mu MOEA. Through various experiments, it can be found that \mu MOEA has outstanding performance in ZDT, DTLZ, SMOP, and MaF problems. Last and most importantly, \mu MOEA is successfully applied to two specific application scenarios of industrial optimization on embedded processor for simulation, such as two different types of semi-autogenous grinding optimization problems and micro-grid energy optimization problem, which prove the feasibility of applying MOEA to embedded processor.
doi_str_mv 10.1109/TCYB.2023.3336369
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10354511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10354511</ieee_id><sourcerecordid>2902973658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-34968e0d0c88bee87950c03dbd635adca9772bf4324120bd56a313a9f94965143</originalsourceid><addsrcrecordid>eNpNkEtPGzEUha2qqCDID0CqKi-7meDHzNhehii0SCCQACFWI499hzqaiVPbw6O_vo4SIu7i3qujc87iQ-iUkimlRJ3dz5_Op4wwPuWc17xWX9ARo7UsGBPV1_1fi0M0iXFJ8sgsKfkNHXJJFJFCHKG3a2eCx9djn5xvl2CSewG8ePH9mIWVDu941j_74NKfAT_mjW8dGHh1EfBdCjrB8zvufMCLoQVrwRa3wRuI0YfiXEew-HJlx5iC0z2-WSc3uH9603yCDjrdR5js7jF6uFjcz38XVze_Luezq8IwUaaCl6qWQCwxUrYAUqiKGMJta2teaWu0EoK1XclZSRlpbVVrTrlWncrBipb8GP3c9q6D_ztCTM3gooG-1yvwY2yYIkwJXlcyW-nWmonEGKBr1sENGUFDSbNh3myYNxvmzY55zvzY1Y_tAHaf-CCcDd-3BgcAnwp5VVaU8v_tTodh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902973658</pqid></control><display><type>article</type><title>Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Hu ; Kong, Fanrong ; Zhang, Qingfu</creator><creatorcontrib>Peng, Hu ; Kong, Fanrong ; Zhang, Qingfu</creatorcontrib><description><![CDATA[In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article proposes a micro MOEA with piecewise strategy <inline-formula> <tex-math notation="LaTeX">(\mu </tex-math></inline-formula>MOEA) for industrial optimization in embedded processor. <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA introduces an improved piecewise strategy based on the MOEA/D framework, which serially optimizes subclusters to be compatible with embedded processor under limited computing power. For the purpose of further enhancing <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA, a dynamic and flexible weight vector update trigger mechanism is proposed, so that the algorithm can save and utilize the computing resources of the embedded processor as much as possible. Abundant artificial test problems are carrying out to test the performance of <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA. Through various experiments, it can be found that <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA has outstanding performance in ZDT, DTLZ, SMOP, and MaF problems. Last and most importantly, <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA is successfully applied to two specific application scenarios of industrial optimization on embedded processor for simulation, such as two different types of semi-autogenous grinding optimization problems and micro-grid energy optimization problem, which prove the feasibility of applying MOEA to embedded processor.]]></description><identifier>ISSN: 2168-2267</identifier><identifier>ISSN: 2168-2275</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2023.3336369</identifier><identifier>PMID: 38090877</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial intelligence ; Decomposition framework ; embedded-processor-based industrial optimization ; Evolutionary computation ; Memory management ; micro multiobjective evolutionary algorithm (MOEA) ; Optimization ; piecewise strategy ; Search problems ; Social factors ; Statistics</subject><ispartof>IEEE transactions on cybernetics, 2024-08, Vol.54 (8), p.4763-4774</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c274t-34968e0d0c88bee87950c03dbd635adca9772bf4324120bd56a313a9f94965143</cites><orcidid>0000-0003-0786-0671 ; 0000-0003-3381-3246 ; 0000-0002-4040-6393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10354511$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10354511$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38090877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Hu</creatorcontrib><creatorcontrib>Kong, Fanrong</creatorcontrib><creatorcontrib>Zhang, Qingfu</creatorcontrib><title>Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description><![CDATA[In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article proposes a micro MOEA with piecewise strategy <inline-formula> <tex-math notation="LaTeX">(\mu </tex-math></inline-formula>MOEA) for industrial optimization in embedded processor. <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA introduces an improved piecewise strategy based on the MOEA/D framework, which serially optimizes subclusters to be compatible with embedded processor under limited computing power. For the purpose of further enhancing <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA, a dynamic and flexible weight vector update trigger mechanism is proposed, so that the algorithm can save and utilize the computing resources of the embedded processor as much as possible. Abundant artificial test problems are carrying out to test the performance of <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA. Through various experiments, it can be found that <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA has outstanding performance in ZDT, DTLZ, SMOP, and MaF problems. Last and most importantly, <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA is successfully applied to two specific application scenarios of industrial optimization on embedded processor for simulation, such as two different types of semi-autogenous grinding optimization problems and micro-grid energy optimization problem, which prove the feasibility of applying MOEA to embedded processor.]]></description><subject>Artificial intelligence</subject><subject>Decomposition framework</subject><subject>embedded-processor-based industrial optimization</subject><subject>Evolutionary computation</subject><subject>Memory management</subject><subject>micro multiobjective evolutionary algorithm (MOEA)</subject><subject>Optimization</subject><subject>piecewise strategy</subject><subject>Search problems</subject><subject>Social factors</subject><subject>Statistics</subject><issn>2168-2267</issn><issn>2168-2275</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtPGzEUha2qqCDID0CqKi-7meDHzNhehii0SCCQACFWI499hzqaiVPbw6O_vo4SIu7i3qujc87iQ-iUkimlRJ3dz5_Op4wwPuWc17xWX9ARo7UsGBPV1_1fi0M0iXFJ8sgsKfkNHXJJFJFCHKG3a2eCx9djn5xvl2CSewG8ePH9mIWVDu941j_74NKfAT_mjW8dGHh1EfBdCjrB8zvufMCLoQVrwRa3wRuI0YfiXEew-HJlx5iC0z2-WSc3uH9603yCDjrdR5js7jF6uFjcz38XVze_Luezq8IwUaaCl6qWQCwxUrYAUqiKGMJta2teaWu0EoK1XclZSRlpbVVrTrlWncrBipb8GP3c9q6D_ztCTM3gooG-1yvwY2yYIkwJXlcyW-nWmonEGKBr1sENGUFDSbNh3myYNxvmzY55zvzY1Y_tAHaf-CCcDd-3BgcAnwp5VVaU8v_tTodh</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Peng, Hu</creator><creator>Kong, Fanrong</creator><creator>Zhang, Qingfu</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0786-0671</orcidid><orcidid>https://orcid.org/0000-0003-3381-3246</orcidid><orcidid>https://orcid.org/0000-0002-4040-6393</orcidid></search><sort><creationdate>20240801</creationdate><title>Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization</title><author>Peng, Hu ; Kong, Fanrong ; Zhang, Qingfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-34968e0d0c88bee87950c03dbd635adca9772bf4324120bd56a313a9f94965143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Decomposition framework</topic><topic>embedded-processor-based industrial optimization</topic><topic>Evolutionary computation</topic><topic>Memory management</topic><topic>micro multiobjective evolutionary algorithm (MOEA)</topic><topic>Optimization</topic><topic>piecewise strategy</topic><topic>Search problems</topic><topic>Social factors</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Hu</creatorcontrib><creatorcontrib>Kong, Fanrong</creatorcontrib><creatorcontrib>Zhang, Qingfu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Hu</au><au>Kong, Fanrong</au><au>Zhang, Qingfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>54</volume><issue>8</issue><spage>4763</spage><epage>4774</epage><pages>4763-4774</pages><issn>2168-2267</issn><issn>2168-2275</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract><![CDATA[In some industrial applications, it is required to do off-line multiobjective optimization in embedded systems. Due to their limited computing and memory capability, embedded processor may not be able to run conventional multiobjective optimization evolutionary algorithms (MOEAs). This article proposes a micro MOEA with piecewise strategy <inline-formula> <tex-math notation="LaTeX">(\mu </tex-math></inline-formula>MOEA) for industrial optimization in embedded processor. <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA introduces an improved piecewise strategy based on the MOEA/D framework, which serially optimizes subclusters to be compatible with embedded processor under limited computing power. For the purpose of further enhancing <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA, a dynamic and flexible weight vector update trigger mechanism is proposed, so that the algorithm can save and utilize the computing resources of the embedded processor as much as possible. Abundant artificial test problems are carrying out to test the performance of <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA. Through various experiments, it can be found that <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA has outstanding performance in ZDT, DTLZ, SMOP, and MaF problems. Last and most importantly, <inline-formula> <tex-math notation="LaTeX">\mu </tex-math></inline-formula>MOEA is successfully applied to two specific application scenarios of industrial optimization on embedded processor for simulation, such as two different types of semi-autogenous grinding optimization problems and micro-grid energy optimization problem, which prove the feasibility of applying MOEA to embedded processor.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>38090877</pmid><doi>10.1109/TCYB.2023.3336369</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0786-0671</orcidid><orcidid>https://orcid.org/0000-0003-3381-3246</orcidid><orcidid>https://orcid.org/0000-0002-4040-6393</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2024-08, Vol.54 (8), p.4763-4774
issn 2168-2267
2168-2275
2168-2275
language eng
recordid cdi_ieee_primary_10354511
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Decomposition framework
embedded-processor-based industrial optimization
Evolutionary computation
Memory management
micro multiobjective evolutionary algorithm (MOEA)
Optimization
piecewise strategy
Search problems
Social factors
Statistics
title Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro%20Multiobjective%20Evolutionary%20Algorithm%20With%20Piecewise%20Strategy%20for%20Embedded-Processor-Based%20Industrial%20Optimization&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Peng,%20Hu&rft.date=2024-08-01&rft.volume=54&rft.issue=8&rft.spage=4763&rft.epage=4774&rft.pages=4763-4774&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2023.3336369&rft_dat=%3Cproquest_RIE%3E2902973658%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902973658&rft_id=info:pmid/38090877&rft_ieee_id=10354511&rfr_iscdi=true