The Roles of Contact Resistivity and Tape Architecture on Transverse Resistance of an NI HTS Coil

This work proposes a computational approach to estimate the equivalent resistance through which current can flow transversely in a no-insulation (NI) coil wound with High-Temperature Superconducting (HTS) tape, i.e., the transverse electrical resistance. The role of the composite layers in REBCO coa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-5
Hauptverfasser: Musso, Andrea, Bang, Jeseok, Riva, Nicolo, Yan, Yufan, Lee, Jung Tae, Hahn, Seungyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Musso, Andrea
Bang, Jeseok
Riva, Nicolo
Yan, Yufan
Lee, Jung Tae
Hahn, Seungyong
description This work proposes a computational approach to estimate the equivalent resistance through which current can flow transversely in a no-insulation (NI) coil wound with High-Temperature Superconducting (HTS) tape, i.e., the transverse electrical resistance. The role of the composite layers in REBCO coated conductors and of the contact surface characteristics are distinguished, as these are key factors of the general transverse resistance. These terms are computed using simplified analytical formulae from which one can assess the impact of each mechanism singularly, e.g., the tape architecture and the temperature-dependent resistivities of its layers. The approach is validated against experimental measurements carried out on a NI single-pancake coil wound with HTS tape and tested at temperatures between 10 K and 80 K and under self magnetic field. The qualitative results obtained allow us to draw preliminary conclusions about the physical mechanisms that drive the transverse resistance in the test coil, which can eventually help during the design phase of a NI winding.
doi_str_mv 10.1109/TASC.2023.3342110
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10354492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10354492</ieee_id><sourcerecordid>2906591776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-bd8f7712dfdd06fde991ed4edebea66b23e4f962ec0168cdfe821376e0de15923</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw137s5lqJWKArteg5pMqFb6m5N0kL_vbu0B08zDM_7DjwIPVIyoZTol3q6mk0YYXzCuWD96QqNqJRVwSSV1_1OJC0qxvgtuktpSwgVlZAjZOsN4GW3g4S7gGddm63LeAmpSbk5NvmEbetxbfeAp9FtmgwuHyLgrsV1tG06Qkxw4W3rYGixLf78wPN61fc1u3t0E-wuwcNljtH322s9mxeLr_eP2XRROKZFLta-CmVJmQ_eExU8aE3BC_CwBqvUmnEQQSsGjlBVOR-gYpSXCogHKjXjY_R87t3H7vcAKZttd4ht_9IwTZTUtCxVT9Ez5WKXUoRg9rH5sfFkKDGDSTOYNINJczHZZ57OmQYA_vFcCtE__gNyO2-a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906591776</pqid></control><display><type>article</type><title>The Roles of Contact Resistivity and Tape Architecture on Transverse Resistance of an NI HTS Coil</title><source>IEEE Electronic Library (IEL)</source><creator>Musso, Andrea ; Bang, Jeseok ; Riva, Nicolo ; Yan, Yufan ; Lee, Jung Tae ; Hahn, Seungyong</creator><creatorcontrib>Musso, Andrea ; Bang, Jeseok ; Riva, Nicolo ; Yan, Yufan ; Lee, Jung Tae ; Hahn, Seungyong</creatorcontrib><description>This work proposes a computational approach to estimate the equivalent resistance through which current can flow transversely in a no-insulation (NI) coil wound with High-Temperature Superconducting (HTS) tape, i.e., the transverse electrical resistance. The role of the composite layers in REBCO coated conductors and of the contact surface characteristics are distinguished, as these are key factors of the general transverse resistance. These terms are computed using simplified analytical formulae from which one can assess the impact of each mechanism singularly, e.g., the tape architecture and the temperature-dependent resistivities of its layers. The approach is validated against experimental measurements carried out on a NI single-pancake coil wound with HTS tape and tested at temperatures between 10 K and 80 K and under self magnetic field. The qualitative results obtained allow us to draw preliminary conclusions about the physical mechanisms that drive the transverse resistance in the test coil, which can eventually help during the design phase of a NI winding.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2023.3342110</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer architecture ; Conductivity ; Conductors ; Copper ; Electric contacts ; High temperature ; High-temperature superconductors ; High-temperature superconductors (HTS) ; no-insulation (NI) coils ; Pancake coils ; radial resistance ; Surface properties ; Surface resistance ; Temperature dependence ; transverse resistance ; Windings</subject><ispartof>IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-bd8f7712dfdd06fde991ed4edebea66b23e4f962ec0168cdfe821376e0de15923</citedby><cites>FETCH-LOGICAL-c294t-bd8f7712dfdd06fde991ed4edebea66b23e4f962ec0168cdfe821376e0de15923</cites><orcidid>0000-0002-4511-4162 ; 0000-0001-6394-5325 ; 0000-0001-9647-5622 ; 0000-0002-2321-3856 ; 0000-0002-3359-7013 ; 0000-0002-4761-6334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10354492$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10354492$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Musso, Andrea</creatorcontrib><creatorcontrib>Bang, Jeseok</creatorcontrib><creatorcontrib>Riva, Nicolo</creatorcontrib><creatorcontrib>Yan, Yufan</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><creatorcontrib>Hahn, Seungyong</creatorcontrib><title>The Roles of Contact Resistivity and Tape Architecture on Transverse Resistance of an NI HTS Coil</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>This work proposes a computational approach to estimate the equivalent resistance through which current can flow transversely in a no-insulation (NI) coil wound with High-Temperature Superconducting (HTS) tape, i.e., the transverse electrical resistance. The role of the composite layers in REBCO coated conductors and of the contact surface characteristics are distinguished, as these are key factors of the general transverse resistance. These terms are computed using simplified analytical formulae from which one can assess the impact of each mechanism singularly, e.g., the tape architecture and the temperature-dependent resistivities of its layers. The approach is validated against experimental measurements carried out on a NI single-pancake coil wound with HTS tape and tested at temperatures between 10 K and 80 K and under self magnetic field. The qualitative results obtained allow us to draw preliminary conclusions about the physical mechanisms that drive the transverse resistance in the test coil, which can eventually help during the design phase of a NI winding.</description><subject>Computer architecture</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>Copper</subject><subject>Electric contacts</subject><subject>High temperature</subject><subject>High-temperature superconductors</subject><subject>High-temperature superconductors (HTS)</subject><subject>no-insulation (NI) coils</subject><subject>Pancake coils</subject><subject>radial resistance</subject><subject>Surface properties</subject><subject>Surface resistance</subject><subject>Temperature dependence</subject><subject>transverse resistance</subject><subject>Windings</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Lw137s5lqJWKArteg5pMqFb6m5N0kL_vbu0B08zDM_7DjwIPVIyoZTol3q6mk0YYXzCuWD96QqNqJRVwSSV1_1OJC0qxvgtuktpSwgVlZAjZOsN4GW3g4S7gGddm63LeAmpSbk5NvmEbetxbfeAp9FtmgwuHyLgrsV1tG06Qkxw4W3rYGixLf78wPN61fc1u3t0E-wuwcNljtH322s9mxeLr_eP2XRROKZFLta-CmVJmQ_eExU8aE3BC_CwBqvUmnEQQSsGjlBVOR-gYpSXCogHKjXjY_R87t3H7vcAKZttd4ht_9IwTZTUtCxVT9Ez5WKXUoRg9rH5sfFkKDGDSTOYNINJczHZZ57OmQYA_vFcCtE__gNyO2-a</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Musso, Andrea</creator><creator>Bang, Jeseok</creator><creator>Riva, Nicolo</creator><creator>Yan, Yufan</creator><creator>Lee, Jung Tae</creator><creator>Hahn, Seungyong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4511-4162</orcidid><orcidid>https://orcid.org/0000-0001-6394-5325</orcidid><orcidid>https://orcid.org/0000-0001-9647-5622</orcidid><orcidid>https://orcid.org/0000-0002-2321-3856</orcidid><orcidid>https://orcid.org/0000-0002-3359-7013</orcidid><orcidid>https://orcid.org/0000-0002-4761-6334</orcidid></search><sort><creationdate>20240801</creationdate><title>The Roles of Contact Resistivity and Tape Architecture on Transverse Resistance of an NI HTS Coil</title><author>Musso, Andrea ; Bang, Jeseok ; Riva, Nicolo ; Yan, Yufan ; Lee, Jung Tae ; Hahn, Seungyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-bd8f7712dfdd06fde991ed4edebea66b23e4f962ec0168cdfe821376e0de15923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer architecture</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>Copper</topic><topic>Electric contacts</topic><topic>High temperature</topic><topic>High-temperature superconductors</topic><topic>High-temperature superconductors (HTS)</topic><topic>no-insulation (NI) coils</topic><topic>Pancake coils</topic><topic>radial resistance</topic><topic>Surface properties</topic><topic>Surface resistance</topic><topic>Temperature dependence</topic><topic>transverse resistance</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Musso, Andrea</creatorcontrib><creatorcontrib>Bang, Jeseok</creatorcontrib><creatorcontrib>Riva, Nicolo</creatorcontrib><creatorcontrib>Yan, Yufan</creatorcontrib><creatorcontrib>Lee, Jung Tae</creatorcontrib><creatorcontrib>Hahn, Seungyong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Musso, Andrea</au><au>Bang, Jeseok</au><au>Riva, Nicolo</au><au>Yan, Yufan</au><au>Lee, Jung Tae</au><au>Hahn, Seungyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Roles of Contact Resistivity and Tape Architecture on Transverse Resistance of an NI HTS Coil</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>This work proposes a computational approach to estimate the equivalent resistance through which current can flow transversely in a no-insulation (NI) coil wound with High-Temperature Superconducting (HTS) tape, i.e., the transverse electrical resistance. The role of the composite layers in REBCO coated conductors and of the contact surface characteristics are distinguished, as these are key factors of the general transverse resistance. These terms are computed using simplified analytical formulae from which one can assess the impact of each mechanism singularly, e.g., the tape architecture and the temperature-dependent resistivities of its layers. The approach is validated against experimental measurements carried out on a NI single-pancake coil wound with HTS tape and tested at temperatures between 10 K and 80 K and under self magnetic field. The qualitative results obtained allow us to draw preliminary conclusions about the physical mechanisms that drive the transverse resistance in the test coil, which can eventually help during the design phase of a NI winding.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2023.3342110</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4511-4162</orcidid><orcidid>https://orcid.org/0000-0001-6394-5325</orcidid><orcidid>https://orcid.org/0000-0001-9647-5622</orcidid><orcidid>https://orcid.org/0000-0002-2321-3856</orcidid><orcidid>https://orcid.org/0000-0002-3359-7013</orcidid><orcidid>https://orcid.org/0000-0002-4761-6334</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_ieee_primary_10354492
source IEEE Electronic Library (IEL)
subjects Computer architecture
Conductivity
Conductors
Copper
Electric contacts
High temperature
High-temperature superconductors
High-temperature superconductors (HTS)
no-insulation (NI) coils
Pancake coils
radial resistance
Surface properties
Surface resistance
Temperature dependence
transverse resistance
Windings
title The Roles of Contact Resistivity and Tape Architecture on Transverse Resistance of an NI HTS Coil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Roles%20of%20Contact%20Resistivity%20and%20Tape%20Architecture%20on%20Transverse%20Resistance%20of%20an%20NI%20HTS%20Coil&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Musso,%20Andrea&rft.date=2024-08-01&rft.volume=34&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2023.3342110&rft_dat=%3Cproquest_RIE%3E2906591776%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906591776&rft_id=info:pmid/&rft_ieee_id=10354492&rfr_iscdi=true