Remote Multi-Nodal Voltage Unbalance Compensation in Islanded AC Microgrids

Microgrids (MG) are exposed to voltage quality deterioration due to the presence of voltage unbalance. To deal with this problem, existing solutions based on Distributed Generation (DG) units interfaced by power electronics offer two type of strategies for voltage unbalance compensation depending on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2023-12, p.1-12
Hauptverfasser: Duarte, Josue, Velasco, Manel, Marti, Pau, Borrell, Angel, Castilla, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on power electronics
container_volume
creator Duarte, Josue
Velasco, Manel
Marti, Pau
Borrell, Angel
Castilla, Miguel
description Microgrids (MG) are exposed to voltage quality deterioration due to the presence of voltage unbalance. To deal with this problem, existing solutions based on Distributed Generation (DG) units interfaced by power electronics offer two type of strategies for voltage unbalance compensation depending on whether the compensation is performed at one remote node or at multiple local nodes. The first type is limited to a single node, and the second type is limited to apply at the DG units output (locally). This paper presents a multi nodal control scheme where DGs can compensate for voltage unbalance at multiple remote nodes of the MG, thus overcoming both state-of-the-art strategies limitations. In particular, negative-sequence voltage is eliminated at as many remote nodes as the number of available DG's. A systematic approach for the multiple-input/multiple-output (MIMO) nature of the problem is presented covering three aspects. First, a square MIMO control strategy is established and a feasibility test is derived to assess whether the problem can be solved. Second, the cross-coupling interaction between the multiple controllers is minimized by optimally selecting which DGs will contribute to mitigate the remote unbalances. Third, stability and transient dynamics are analyzed. Laboratory experimental results corroborate the control performance.
doi_str_mv 10.1109/TPEL.2023.3340093
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10345787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10345787</ieee_id><sourcerecordid>10345787</sourcerecordid><originalsourceid>FETCH-ieee_primary_103457873</originalsourceid><addsrcrecordid>eNqFyb0KwjAUQOEgCtafBxAc8gKt95qWNqMURdGKiLpKtFeJpIk0dfDtdXB3OvAdxkYIESLIyWE330RTmIpIiBhAihYLUMYYAkLaZgFkWRJmUoou63n_AMA4AQzYek-Va4gXL9PocOtKZfjJmUbdiR_tRRllr8RzVz3JetVoZ7m2fOW_XlLJZzkv9LV291qXfsA6N2U8DX_ts_FifsiXoSai87PWlarfZwQRJ2mWij_7A6WrPbE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remote Multi-Nodal Voltage Unbalance Compensation in Islanded AC Microgrids</title><source>IEEE Xplore</source><creator>Duarte, Josue ; Velasco, Manel ; Marti, Pau ; Borrell, Angel ; Castilla, Miguel</creator><creatorcontrib>Duarte, Josue ; Velasco, Manel ; Marti, Pau ; Borrell, Angel ; Castilla, Miguel</creatorcontrib><description>Microgrids (MG) are exposed to voltage quality deterioration due to the presence of voltage unbalance. To deal with this problem, existing solutions based on Distributed Generation (DG) units interfaced by power electronics offer two type of strategies for voltage unbalance compensation depending on whether the compensation is performed at one remote node or at multiple local nodes. The first type is limited to a single node, and the second type is limited to apply at the DG units output (locally). This paper presents a multi nodal control scheme where DGs can compensate for voltage unbalance at multiple remote nodes of the MG, thus overcoming both state-of-the-art strategies limitations. In particular, negative-sequence voltage is eliminated at as many remote nodes as the number of available DG's. A systematic approach for the multiple-input/multiple-output (MIMO) nature of the problem is presented covering three aspects. First, a square MIMO control strategy is established and a feasibility test is derived to assess whether the problem can be solved. Second, the cross-coupling interaction between the multiple controllers is minimized by optimally selecting which DGs will contribute to mitigate the remote unbalances. Third, stability and transient dynamics are analyzed. Laboratory experimental results corroborate the control performance.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2023.3340093</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>IEEE</publisher><subject>Inverters ; Mathematical models ; MIMO communication ; power quality ; Symmetric matrices ; three-phase inverter ; Voltage control ; Voltage measurement ; Voltage unbalance compensation</subject><ispartof>IEEE transactions on power electronics, 2023-12, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9532-4491 ; 0000-0002-3284-860X ; 0000-0002-0764-3063 ; 0000-0002-5189-0782 ; 0000-0003-1658-5886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10345787$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10345787$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Duarte, Josue</creatorcontrib><creatorcontrib>Velasco, Manel</creatorcontrib><creatorcontrib>Marti, Pau</creatorcontrib><creatorcontrib>Borrell, Angel</creatorcontrib><creatorcontrib>Castilla, Miguel</creatorcontrib><title>Remote Multi-Nodal Voltage Unbalance Compensation in Islanded AC Microgrids</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>Microgrids (MG) are exposed to voltage quality deterioration due to the presence of voltage unbalance. To deal with this problem, existing solutions based on Distributed Generation (DG) units interfaced by power electronics offer two type of strategies for voltage unbalance compensation depending on whether the compensation is performed at one remote node or at multiple local nodes. The first type is limited to a single node, and the second type is limited to apply at the DG units output (locally). This paper presents a multi nodal control scheme where DGs can compensate for voltage unbalance at multiple remote nodes of the MG, thus overcoming both state-of-the-art strategies limitations. In particular, negative-sequence voltage is eliminated at as many remote nodes as the number of available DG's. A systematic approach for the multiple-input/multiple-output (MIMO) nature of the problem is presented covering three aspects. First, a square MIMO control strategy is established and a feasibility test is derived to assess whether the problem can be solved. Second, the cross-coupling interaction between the multiple controllers is minimized by optimally selecting which DGs will contribute to mitigate the remote unbalances. Third, stability and transient dynamics are analyzed. Laboratory experimental results corroborate the control performance.</description><subject>Inverters</subject><subject>Mathematical models</subject><subject>MIMO communication</subject><subject>power quality</subject><subject>Symmetric matrices</subject><subject>three-phase inverter</subject><subject>Voltage control</subject><subject>Voltage measurement</subject><subject>Voltage unbalance compensation</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFyb0KwjAUQOEgCtafBxAc8gKt95qWNqMURdGKiLpKtFeJpIk0dfDtdXB3OvAdxkYIESLIyWE330RTmIpIiBhAihYLUMYYAkLaZgFkWRJmUoou63n_AMA4AQzYek-Va4gXL9PocOtKZfjJmUbdiR_tRRllr8RzVz3JetVoZ7m2fOW_XlLJZzkv9LV291qXfsA6N2U8DX_ts_FifsiXoSai87PWlarfZwQRJ2mWij_7A6WrPbE</recordid><startdate>20231205</startdate><enddate>20231205</enddate><creator>Duarte, Josue</creator><creator>Velasco, Manel</creator><creator>Marti, Pau</creator><creator>Borrell, Angel</creator><creator>Castilla, Miguel</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-9532-4491</orcidid><orcidid>https://orcid.org/0000-0002-3284-860X</orcidid><orcidid>https://orcid.org/0000-0002-0764-3063</orcidid><orcidid>https://orcid.org/0000-0002-5189-0782</orcidid><orcidid>https://orcid.org/0000-0003-1658-5886</orcidid></search><sort><creationdate>20231205</creationdate><title>Remote Multi-Nodal Voltage Unbalance Compensation in Islanded AC Microgrids</title><author>Duarte, Josue ; Velasco, Manel ; Marti, Pau ; Borrell, Angel ; Castilla, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_103457873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Inverters</topic><topic>Mathematical models</topic><topic>MIMO communication</topic><topic>power quality</topic><topic>Symmetric matrices</topic><topic>three-phase inverter</topic><topic>Voltage control</topic><topic>Voltage measurement</topic><topic>Voltage unbalance compensation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duarte, Josue</creatorcontrib><creatorcontrib>Velasco, Manel</creatorcontrib><creatorcontrib>Marti, Pau</creatorcontrib><creatorcontrib>Borrell, Angel</creatorcontrib><creatorcontrib>Castilla, Miguel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Duarte, Josue</au><au>Velasco, Manel</au><au>Marti, Pau</au><au>Borrell, Angel</au><au>Castilla, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Multi-Nodal Voltage Unbalance Compensation in Islanded AC Microgrids</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2023-12-05</date><risdate>2023</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>Microgrids (MG) are exposed to voltage quality deterioration due to the presence of voltage unbalance. To deal with this problem, existing solutions based on Distributed Generation (DG) units interfaced by power electronics offer two type of strategies for voltage unbalance compensation depending on whether the compensation is performed at one remote node or at multiple local nodes. The first type is limited to a single node, and the second type is limited to apply at the DG units output (locally). This paper presents a multi nodal control scheme where DGs can compensate for voltage unbalance at multiple remote nodes of the MG, thus overcoming both state-of-the-art strategies limitations. In particular, negative-sequence voltage is eliminated at as many remote nodes as the number of available DG's. A systematic approach for the multiple-input/multiple-output (MIMO) nature of the problem is presented covering three aspects. First, a square MIMO control strategy is established and a feasibility test is derived to assess whether the problem can be solved. Second, the cross-coupling interaction between the multiple controllers is minimized by optimally selecting which DGs will contribute to mitigate the remote unbalances. Third, stability and transient dynamics are analyzed. Laboratory experimental results corroborate the control performance.</abstract><pub>IEEE</pub><doi>10.1109/TPEL.2023.3340093</doi><orcidid>https://orcid.org/0000-0002-9532-4491</orcidid><orcidid>https://orcid.org/0000-0002-3284-860X</orcidid><orcidid>https://orcid.org/0000-0002-0764-3063</orcidid><orcidid>https://orcid.org/0000-0002-5189-0782</orcidid><orcidid>https://orcid.org/0000-0003-1658-5886</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2023-12, p.1-12
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_10345787
source IEEE Xplore
subjects Inverters
Mathematical models
MIMO communication
power quality
Symmetric matrices
three-phase inverter
Voltage control
Voltage measurement
Voltage unbalance compensation
title Remote Multi-Nodal Voltage Unbalance Compensation in Islanded AC Microgrids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A32%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Multi-Nodal%20Voltage%20Unbalance%20Compensation%20in%20Islanded%20AC%20Microgrids&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Duarte,%20Josue&rft.date=2023-12-05&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2023.3340093&rft_dat=%3Cieee_RIE%3E10345787%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10345787&rfr_iscdi=true