Audiovisual Affect Recognition for Autonomous Vehicles: Applications and Future Agendas

Emotion and a broader range of affective and cognitive states play an important role on the road. While this has been predominantly investigated in terms of driver safety, the approaching advent of autonomous vehicles (AVs) is expected to bring a fundamental shift in focus for emotion recognition in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-06, Vol.25 (6), p.4918-4932
Hauptverfasser: Karas, Vincent, Schuller, Dagmar M., Schuller, Bjorn W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4932
container_issue 6
container_start_page 4918
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Karas, Vincent
Schuller, Dagmar M.
Schuller, Bjorn W.
description Emotion and a broader range of affective and cognitive states play an important role on the road. While this has been predominantly investigated in terms of driver safety, the approaching advent of autonomous vehicles (AVs) is expected to bring a fundamental shift in focus for emotion recognition in the car, from the driver to the passengers. This work presents a number of affect-enabled applications, including adapting the driving style for an emotional experience or tailoring the infotainment to personal preferences. It attempts to foresee upcoming challenges and provides suggestions for multimodal affect modelling, with a focus on the audio and visual modalities. In particular, this includes context awareness, reliable diarisation of multiple passengers, group affect, and personalisation. Finally, we provide some recommendations on future research directions, including explainability, privacy, and holistic modelling.
doi_str_mv 10.1109/TITS.2023.3333749
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10337780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10337780</ieee_id><sourcerecordid>3062735966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c28c76352cf54f86693a555ae17738a1480744aa1a7b607d2829f6a6b7bc13063</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Nya7-x6W4rVgiBo1WNIs0lN2W7WZCP4792lPTiHmWHmfWfgAeAaoznGqLxbr9Zvc4IIndMhJCtPwARzXswQwuJ07AmblYijc3CR0m6YMo7xBHxWufbhx6esG1g5Z00PX60J29b3PrTQhQir3Ic27ENO8MN-edPYdA-rrmu80aMoQd3WcJn7HC2stratdboEZ043yV4d6xS8Lx_Wi6fZ88vjalE9zwxhoh9yYaSgnBjHmSuEKKnmnGuLpaSFxqxAkjGtsZYbgWRNClI6ocVGbgymSNApuD3c7WL4zjb1ahdybIeXalgTSXkpRhU-qEwMKUXrVBf9XsdfhZEa-amRnxr5qSO_wXNz8Hhr7T_9sJUFon_D42uZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062735966</pqid></control><display><type>article</type><title>Audiovisual Affect Recognition for Autonomous Vehicles: Applications and Future Agendas</title><source>IEEE Electronic Library (IEL)</source><creator>Karas, Vincent ; Schuller, Dagmar M. ; Schuller, Bjorn W.</creator><creatorcontrib>Karas, Vincent ; Schuller, Dagmar M. ; Schuller, Bjorn W.</creatorcontrib><description>Emotion and a broader range of affective and cognitive states play an important role on the road. While this has been predominantly investigated in terms of driver safety, the approaching advent of autonomous vehicles (AVs) is expected to bring a fundamental shift in focus for emotion recognition in the car, from the driver to the passengers. This work presents a number of affect-enabled applications, including adapting the driving style for an emotional experience or tailoring the infotainment to personal preferences. It attempts to foresee upcoming challenges and provides suggestions for multimodal affect modelling, with a focus on the audio and visual modalities. In particular, this includes context awareness, reliable diarisation of multiple passengers, group affect, and personalisation. Finally, we provide some recommendations on future research directions, including explainability, privacy, and holistic modelling.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3333749</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automobiles ; Autonomous vehicles ; Cameras ; Emotion recognition ; Emotions ; human-machine interaction ; Intelligent sensors ; interior sensing ; Modelling ; Monitoring ; Sensors ; Vehicle safety ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-06, Vol.25 (6), p.4918-4932</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-c28c76352cf54f86693a555ae17738a1480744aa1a7b607d2829f6a6b7bc13063</cites><orcidid>0000-0001-8364-8301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10337780$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10337780$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karas, Vincent</creatorcontrib><creatorcontrib>Schuller, Dagmar M.</creatorcontrib><creatorcontrib>Schuller, Bjorn W.</creatorcontrib><title>Audiovisual Affect Recognition for Autonomous Vehicles: Applications and Future Agendas</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Emotion and a broader range of affective and cognitive states play an important role on the road. While this has been predominantly investigated in terms of driver safety, the approaching advent of autonomous vehicles (AVs) is expected to bring a fundamental shift in focus for emotion recognition in the car, from the driver to the passengers. This work presents a number of affect-enabled applications, including adapting the driving style for an emotional experience or tailoring the infotainment to personal preferences. It attempts to foresee upcoming challenges and provides suggestions for multimodal affect modelling, with a focus on the audio and visual modalities. In particular, this includes context awareness, reliable diarisation of multiple passengers, group affect, and personalisation. Finally, we provide some recommendations on future research directions, including explainability, privacy, and holistic modelling.</description><subject>Automobiles</subject><subject>Autonomous vehicles</subject><subject>Cameras</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>human-machine interaction</subject><subject>Intelligent sensors</subject><subject>interior sensing</subject><subject>Modelling</subject><subject>Monitoring</subject><subject>Sensors</subject><subject>Vehicle safety</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8Nya7-x6W4rVgiBo1WNIs0lN2W7WZCP4792lPTiHmWHmfWfgAeAaoznGqLxbr9Zvc4IIndMhJCtPwARzXswQwuJ07AmblYijc3CR0m6YMo7xBHxWufbhx6esG1g5Z00PX60J29b3PrTQhQir3Ic27ENO8MN-edPYdA-rrmu80aMoQd3WcJn7HC2stratdboEZ043yV4d6xS8Lx_Wi6fZ88vjalE9zwxhoh9yYaSgnBjHmSuEKKnmnGuLpaSFxqxAkjGtsZYbgWRNClI6ocVGbgymSNApuD3c7WL4zjb1ahdybIeXalgTSXkpRhU-qEwMKUXrVBf9XsdfhZEa-amRnxr5qSO_wXNz8Hhr7T_9sJUFon_D42uZ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Karas, Vincent</creator><creator>Schuller, Dagmar M.</creator><creator>Schuller, Bjorn W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8364-8301</orcidid></search><sort><creationdate>20240601</creationdate><title>Audiovisual Affect Recognition for Autonomous Vehicles: Applications and Future Agendas</title><author>Karas, Vincent ; Schuller, Dagmar M. ; Schuller, Bjorn W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c28c76352cf54f86693a555ae17738a1480744aa1a7b607d2829f6a6b7bc13063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automobiles</topic><topic>Autonomous vehicles</topic><topic>Cameras</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>human-machine interaction</topic><topic>Intelligent sensors</topic><topic>interior sensing</topic><topic>Modelling</topic><topic>Monitoring</topic><topic>Sensors</topic><topic>Vehicle safety</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karas, Vincent</creatorcontrib><creatorcontrib>Schuller, Dagmar M.</creatorcontrib><creatorcontrib>Schuller, Bjorn W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karas, Vincent</au><au>Schuller, Dagmar M.</au><au>Schuller, Bjorn W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Audiovisual Affect Recognition for Autonomous Vehicles: Applications and Future Agendas</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>25</volume><issue>6</issue><spage>4918</spage><epage>4932</epage><pages>4918-4932</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Emotion and a broader range of affective and cognitive states play an important role on the road. While this has been predominantly investigated in terms of driver safety, the approaching advent of autonomous vehicles (AVs) is expected to bring a fundamental shift in focus for emotion recognition in the car, from the driver to the passengers. This work presents a number of affect-enabled applications, including adapting the driving style for an emotional experience or tailoring the infotainment to personal preferences. It attempts to foresee upcoming challenges and provides suggestions for multimodal affect modelling, with a focus on the audio and visual modalities. In particular, this includes context awareness, reliable diarisation of multiple passengers, group affect, and personalisation. Finally, we provide some recommendations on future research directions, including explainability, privacy, and holistic modelling.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3333749</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8364-8301</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-06, Vol.25 (6), p.4918-4932
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_10337780
source IEEE Electronic Library (IEL)
subjects Automobiles
Autonomous vehicles
Cameras
Emotion recognition
Emotions
human-machine interaction
Intelligent sensors
interior sensing
Modelling
Monitoring
Sensors
Vehicle safety
Vehicles
title Audiovisual Affect Recognition for Autonomous Vehicles: Applications and Future Agendas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Audiovisual%20Affect%20Recognition%20for%20Autonomous%20Vehicles:%20Applications%20and%20Future%20Agendas&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Karas,%20Vincent&rft.date=2024-06-01&rft.volume=25&rft.issue=6&rft.spage=4918&rft.epage=4932&rft.pages=4918-4932&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3333749&rft_dat=%3Cproquest_RIE%3E3062735966%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062735966&rft_id=info:pmid/&rft_ieee_id=10337780&rfr_iscdi=true